// Revised 12/08/23 // https://gist.github.com/igv/a015fc885d5c22e6891820ad89555637 // https://raw.githubusercontent.com/deus0ww/mpv-conf/master/shaders/bilateral/KrigBilateral.glsl // // KrigBilateral by Shiandow // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3.0 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library. //!HOOK CHROMA //!BIND LUMA //!BIND HOOKED //!SAVE LOWRES_Y //!WIDTH LUMA.w //!WHEN CHROMA.w LUMA.w < //!DESC KrigBilateral Downscaling Y 1 #define offset vec2(0) #define axis 1 #define Kernel(x) dot(vec3(0.426590713671539, -0.496560619088564, 0.0768486672398968), cos(vec3(0, 1, 2) * acos(-1.) * (x + 1.))) vec4 hook() { // Calculate bounds float low = ceil((LUMA_pos - CHROMA_pt) * LUMA_size - offset - 0.5)[axis]; float high = floor((LUMA_pos + CHROMA_pt) * LUMA_size - offset - 0.5)[axis]; float W = 0.0; vec4 avg = vec4(0); vec2 pos = LUMA_pos; for (float k = low; k <= high; k++) { pos[axis] = LUMA_pt[axis] * (k - offset[axis] + 0.5); float rel = (pos[axis] - LUMA_pos[axis])*CHROMA_size[axis]; float w = Kernel(rel); vec4 y = textureGrad(LUMA_raw, pos, vec2(0.0), vec2(0.0)).xxxx * LUMA_mul; y.y *= y.y; avg += w * y; W += w; } avg /= W; avg.y = abs(avg.y - avg.x * avg.x); return avg; } //!HOOK CHROMA //!BIND LOWRES_Y //!BIND HOOKED //!SAVE LOWRES_Y //!WHEN CHROMA.w LUMA.w < //!DESC KrigBilateral Downscaling Y 2 #define offset vec2(0) #define axis 0 #define Kernel(x) dot(vec3(0.426590713671539, -0.496560619088564, 0.0768486672398968), cos(vec3(0, 1, 2) * acos(-1.) * (x + 1.))) vec4 hook() { // Calculate bounds float low = ceil((LOWRES_Y_pos - CHROMA_pt) * LOWRES_Y_size - offset - 0.5)[axis]; float high = floor((LOWRES_Y_pos + CHROMA_pt) * LOWRES_Y_size - offset - 0.5)[axis]; float W = 0.0; vec4 avg = vec4(0); vec2 pos = LOWRES_Y_pos; for (float k = low; k <= high; k++) { pos[axis] = LOWRES_Y_pt[axis] * (k - offset[axis] + 0.5); float rel = (pos[axis] - LOWRES_Y_pos[axis])*CHROMA_size[axis]; float w = Kernel(rel); vec4 y = textureGrad(LOWRES_Y_raw, pos, vec2(0.0), vec2(0.0)).xxxx * LOWRES_Y_mul; y.y *= y.y; avg += w * y; W += w; } avg /= W; avg.y = abs(avg.y - avg.x * avg.x) + LOWRES_Y_texOff(0).y; return avg; } //!HOOK CHROMA //!BIND HOOKED //!BIND LUMA //!BIND LOWRES_Y //!WIDTH LUMA.w //!HEIGHT LUMA.h //!WHEN CHROMA.w LUMA.w < //!OFFSET ALIGN //!DESC KrigBilateral Upscaling UV #define radius 1.0 // 1.0 <-> 1.5 higher is sharper #define sigma_nsq 256.0/(255.0*255.0) #define N 8 #define sqr(x) dot(x,x) #define M(i,j) Mx[min(i,j)*N + max(i,j) - (min(i,j)*(min(i,j)+1))/2] #define C(i,j) (inversesqrt(1.0 + (X[i].y + X[j].y) / Var) * exp(-0.5 * (sqr(X[i].x - X[j].x) / (localVar + X[i].y + X[j].y) + sqr((coords[i] - coords[j]) / radius))) /*+ (X[i].x - y) * (X[j].x - y) / Var*/) // commented out part works well only on test patterns #define c(i) (inversesqrt(1.0 + X[i].y / Var) * exp(-0.5 * (sqr(X[i].x - y) / (localVar + X[i].y) + sqr((coords[i] - offset) / radius)))) #define getnsum(i) X[i] = vec4(LOWRES_Y_tex(LOWRES_Y_pt*(pos+coords[i]+vec2(0.5))).xy, \ CHROMA_tex(CHROMA_pt*(pos+coords[i]+vec2(0.5))).xy); \ w = clamp(1.5 - abs(coords[i]), 0.0, 1.0); \ total += w.x*w.y*vec4(X[i].x, X[i].x * X[i].x, X[i].y, 1.0); #define I3(f, n) f(n) f(n+1) f(n+2) #define I9(f, n) I3(f, n) I3(f, n+3) I3(f, n+6) vec4 hook() { vec2 pos = CHROMA_pos * HOOKED_size - vec2(0.5); vec2 offset = pos - round(pos); pos -= offset; vec2 coords[N+1]; vec4 X[N+1]; vec2 w; vec4 total = vec4(0); coords[0] = vec2(-1,-1); coords[1] = vec2(-1, 0); coords[2] = vec2(-1, 1); coords[3] = vec2( 0,-1); coords[4] = vec2( 0, 1); coords[5] = vec2( 1,-1); coords[6] = vec2( 1, 0); coords[7] = vec2( 1, 1); coords[8] = vec2( 0, 0); I9(getnsum, 0) total.xyz /= total.w; float localVar = abs(total.y - total.x * total.x) + sigma_nsq; float Var = localVar + total.z; float y = LUMA_texOff(0).x; float Mx[(N*(N+1))/2]; float b[N]; vec2 interp = X[N].zw; b[0] = c(0) - c(N) - C(0,N) + C(N,N); M(0, 0) = C(0,0) - C(0,N) - C(0,N) + C(N,N); M(0, 1) = C(0,1) - C(1,N) - C(0,N) + C(N,N); M(0, 2) = C(0,2) - C(2,N) - C(0,N) + C(N,N); M(0, 3) = C(0,3) - C(3,N) - C(0,N) + C(N,N); M(0, 4) = C(0,4) - C(4,N) - C(0,N) + C(N,N); M(0, 5) = C(0,5) - C(5,N) - C(0,N) + C(N,N); M(0, 6) = C(0,6) - C(6,N) - C(0,N) + C(N,N); M(0, 7) = C(0,7) - C(7,N) - C(0,N) + C(N,N); b[1] = c(1) - c(N) - C(1,N) + C(N,N); M(1, 1) = C(1,1) - C(1,N) - C(1,N) + C(N,N); M(1, 2) = C(1,2) - C(2,N) - C(1,N) + C(N,N); M(1, 3) = C(1,3) - C(3,N) - C(1,N) + C(N,N); M(1, 4) = C(1,4) - C(4,N) - C(1,N) + C(N,N); M(1, 5) = C(1,5) - C(5,N) - C(1,N) + C(N,N); M(1, 6) = C(1,6) - C(6,N) - C(1,N) + C(N,N); M(1, 7) = C(1,7) - C(7,N) - C(1,N) + C(N,N); b[2] = c(2) - c(N) - C(2,N) + C(N,N); M(2, 2) = C(2,2) - C(2,N) - C(2,N) + C(N,N); M(2, 3) = C(2,3) - C(3,N) - C(2,N) + C(N,N); M(2, 4) = C(2,4) - C(4,N) - C(2,N) + C(N,N); M(2, 5) = C(2,5) - C(5,N) - C(2,N) + C(N,N); M(2, 6) = C(2,6) - C(6,N) - C(2,N) + C(N,N); M(2, 7) = C(2,7) - C(7,N) - C(2,N) + C(N,N); b[3] = c(3) - c(N) - C(3,N) + C(N,N); M(3, 3) = C(3,3) - C(3,N) - C(3,N) + C(N,N); M(3, 4) = C(3,4) - C(4,N) - C(3,N) + C(N,N); M(3, 5) = C(3,5) - C(5,N) - C(3,N) + C(N,N); M(3, 6) = C(3,6) - C(6,N) - C(3,N) + C(N,N); M(3, 7) = C(3,7) - C(7,N) - C(3,N) + C(N,N); b[4] = c(4) - c(N) - C(4,N) + C(N,N); M(4, 4) = C(4,4) - C(4,N) - C(4,N) + C(N,N); M(4, 5) = C(4,5) - C(5,N) - C(4,N) + C(N,N); M(4, 6) = C(4,6) - C(6,N) - C(4,N) + C(N,N); M(4, 7) = C(4,7) - C(7,N) - C(4,N) + C(N,N); b[5] = c(5) - c(N) - C(5,N) + C(N,N); M(5, 5) = C(5,5) - C(5,N) - C(5,N) + C(N,N); M(5, 6) = C(5,6) - C(6,N) - C(5,N) + C(N,N); M(5, 7) = C(5,7) - C(7,N) - C(5,N) + C(N,N); b[6] = c(6) - c(N) - C(6,N) + C(N,N); M(6, 6) = C(6,6) - C(6,N) - C(6,N) + C(N,N); M(6, 7) = C(6,7) - C(7,N) - C(6,N) + C(N,N); b[7] = c(7) - c(N) - C(7,N) + C(N,N); M(7, 7) = C(7,7) - C(7,N) - C(7,N) + C(N,N); b[1] -= b[0] * M(0, 1) / M(0, 0); M(1, 1) -= M(0, 1) * M(0, 1) / M(0, 0); M(1, 2) -= M(0, 2) * M(0, 1) / M(0, 0); M(1, 3) -= M(0, 3) * M(0, 1) / M(0, 0); M(1, 4) -= M(0, 4) * M(0, 1) / M(0, 0); M(1, 5) -= M(0, 5) * M(0, 1) / M(0, 0); M(1, 6) -= M(0, 6) * M(0, 1) / M(0, 0); M(1, 7) -= M(0, 7) * M(0, 1) / M(0, 0); b[2] -= b[0] * M(0, 2) / M(0, 0); M(2, 2) -= M(0, 2) * M(0, 2) / M(0, 0); M(2, 3) -= M(0, 3) * M(0, 2) / M(0, 0); M(2, 4) -= M(0, 4) * M(0, 2) / M(0, 0); M(2, 5) -= M(0, 5) * M(0, 2) / M(0, 0); M(2, 6) -= M(0, 6) * M(0, 2) / M(0, 0); M(2, 7) -= M(0, 7) * M(0, 2) / M(0, 0); b[3] -= b[0] * M(0, 3) / M(0, 0); M(3, 3) -= M(0, 3) * M(0, 3) / M(0, 0); M(3, 4) -= M(0, 4) * M(0, 3) / M(0, 0); M(3, 5) -= M(0, 5) * M(0, 3) / M(0, 0); M(3, 6) -= M(0, 6) * M(0, 3) / M(0, 0); M(3, 7) -= M(0, 7) * M(0, 3) / M(0, 0); b[4] -= b[0] * M(0, 4) / M(0, 0); M(4, 4) -= M(0, 4) * M(0, 4) / M(0, 0); M(4, 5) -= M(0, 5) * M(0, 4) / M(0, 0); M(4, 6) -= M(0, 6) * M(0, 4) / M(0, 0); M(4, 7) -= M(0, 7) * M(0, 4) / M(0, 0); b[5] -= b[0] * M(0, 5) / M(0, 0); M(5, 5) -= M(0, 5) * M(0, 5) / M(0, 0); M(5, 6) -= M(0, 6) * M(0, 5) / M(0, 0); M(5, 7) -= M(0, 7) * M(0, 5) / M(0, 0); b[6] -= b[0] * M(0, 6) / M(0, 0); M(6, 6) -= M(0, 6) * M(0, 6) / M(0, 0); M(6, 7) -= M(0, 7) * M(0, 6) / M(0, 0); b[7] -= b[0] * M(0, 7) / M(0, 0); M(7, 7) -= M(0, 7) * M(0, 7) / M(0, 0); b[2] -= b[1] * M(1, 2) / M(1, 1); M(2, 2) -= M(1, 2) * M(1, 2) / M(1, 1); M(2, 3) -= M(1, 3) * M(1, 2) / M(1, 1); M(2, 4) -= M(1, 4) * M(1, 2) / M(1, 1); M(2, 5) -= M(1, 5) * M(1, 2) / M(1, 1); M(2, 6) -= M(1, 6) * M(1, 2) / M(1, 1); M(2, 7) -= M(1, 7) * M(1, 2) / M(1, 1); b[3] -= b[1] * M(1, 3) / M(1, 1); M(3, 3) -= M(1, 3) * M(1, 3) / M(1, 1); M(3, 4) -= M(1, 4) * M(1, 3) / M(1, 1); M(3, 5) -= M(1, 5) * M(1, 3) / M(1, 1); M(3, 6) -= M(1, 6) * M(1, 3) / M(1, 1); M(3, 7) -= M(1, 7) * M(1, 3) / M(1, 1); b[4] -= b[1] * M(1, 4) / M(1, 1); M(4, 4) -= M(1, 4) * M(1, 4) / M(1, 1); M(4, 5) -= M(1, 5) * M(1, 4) / M(1, 1); M(4, 6) -= M(1, 6) * M(1, 4) / M(1, 1); M(4, 7) -= M(1, 7) * M(1, 4) / M(1, 1); b[5] -= b[1] * M(1, 5) / M(1, 1); M(5, 5) -= M(1, 5) * M(1, 5) / M(1, 1); M(5, 6) -= M(1, 6) * M(1, 5) / M(1, 1); M(5, 7) -= M(1, 7) * M(1, 5) / M(1, 1); b[6] -= b[1] * M(1, 6) / M(1, 1); M(6, 6) -= M(1, 6) * M(1, 6) / M(1, 1); M(6, 7) -= M(1, 7) * M(1, 6) / M(1, 1); b[7] -= b[1] * M(1, 7) / M(1, 1); M(7, 7) -= M(1, 7) * M(1, 7) / M(1, 1); b[3] -= b[2] * M(2, 3) / M(2, 2); M(3, 3) -= M(2, 3) * M(2, 3) / M(2, 2); M(3, 4) -= M(2, 4) * M(2, 3) / M(2, 2); M(3, 5) -= M(2, 5) * M(2, 3) / M(2, 2); M(3, 6) -= M(2, 6) * M(2, 3) / M(2, 2); M(3, 7) -= M(2, 7) * M(2, 3) / M(2, 2); b[4] -= b[2] * M(2, 4) / M(2, 2); M(4, 4) -= M(2, 4) * M(2, 4) / M(2, 2); M(4, 5) -= M(2, 5) * M(2, 4) / M(2, 2); M(4, 6) -= M(2, 6) * M(2, 4) / M(2, 2); M(4, 7) -= M(2, 7) * M(2, 4) / M(2, 2); b[5] -= b[2] * M(2, 5) / M(2, 2); M(5, 5) -= M(2, 5) * M(2, 5) / M(2, 2); M(5, 6) -= M(2, 6) * M(2, 5) / M(2, 2); M(5, 7) -= M(2, 7) * M(2, 5) / M(2, 2); b[6] -= b[2] * M(2, 6) / M(2, 2); M(6, 6) -= M(2, 6) * M(2, 6) / M(2, 2); M(6, 7) -= M(2, 7) * M(2, 6) / M(2, 2); b[7] -= b[2] * M(2, 7) / M(2, 2); M(7, 7) -= M(2, 7) * M(2, 7) / M(2, 2); b[4] -= b[3] * M(3, 4) / M(3, 3); M(4, 4) -= M(3, 4) * M(3, 4) / M(3, 3); M(4, 5) -= M(3, 5) * M(3, 4) / M(3, 3); M(4, 6) -= M(3, 6) * M(3, 4) / M(3, 3); M(4, 7) -= M(3, 7) * M(3, 4) / M(3, 3); b[5] -= b[3] * M(3, 5) / M(3, 3); M(5, 5) -= M(3, 5) * M(3, 5) / M(3, 3); M(5, 6) -= M(3, 6) * M(3, 5) / M(3, 3); M(5, 7) -= M(3, 7) * M(3, 5) / M(3, 3); b[6] -= b[3] * M(3, 6) / M(3, 3); M(6, 6) -= M(3, 6) * M(3, 6) / M(3, 3); M(6, 7) -= M(3, 7) * M(3, 6) / M(3, 3); b[7] -= b[3] * M(3, 7) / M(3, 3); M(7, 7) -= M(3, 7) * M(3, 7) / M(3, 3); b[5] -= b[4] * M(4, 5) / M(4, 4); M(5, 5) -= M(4, 5) * M(4, 5) / M(4, 4); M(5, 6) -= M(4, 6) * M(4, 5) / M(4, 4); M(5, 7) -= M(4, 7) * M(4, 5) / M(4, 4); b[6] -= b[4] * M(4, 6) / M(4, 4); M(6, 6) -= M(4, 6) * M(4, 6) / M(4, 4); M(6, 7) -= M(4, 7) * M(4, 6) / M(4, 4); b[7] -= b[4] * M(4, 7) / M(4, 4); M(7, 7) -= M(4, 7) * M(4, 7) / M(4, 4); b[6] -= b[5] * M(5, 6) / M(5, 5); M(6, 6) -= M(5, 6) * M(5, 6) / M(5, 5); M(6, 7) -= M(5, 7) * M(5, 6) / M(5, 5); b[7] -= b[5] * M(5, 7) / M(5, 5); M(7, 7) -= M(5, 7) * M(5, 7) / M(5, 5); b[7] -= b[6] * M(6, 7) / M(6, 6); M(7, 7) -= M(6, 7) * M(6, 7) / M(6, 6); b[7] /= M(7, 7); interp += b[7] * (X[7] - X[N]).zw; b[6] -= M(6, 7) * b[7]; b[6] /= M(6, 6); interp += b[6] * (X[6] - X[N]).zw; b[5] -= M(5, 6) * b[6]; b[5] -= M(5, 7) * b[7]; b[5] /= M(5, 5); interp += b[5] * (X[5] - X[N]).zw; b[4] -= M(4, 5) * b[5]; b[4] -= M(4, 6) * b[6]; b[4] -= M(4, 7) * b[7]; b[4] /= M(4, 4); interp += b[4] * (X[4] - X[N]).zw; b[3] -= M(3, 4) * b[4]; b[3] -= M(3, 5) * b[5]; b[3] -= M(3, 6) * b[6]; b[3] -= M(3, 7) * b[7]; b[3] /= M(3, 3); interp += b[3] * (X[3] - X[N]).zw; b[2] -= M(2, 3) * b[3]; b[2] -= M(2, 4) * b[4]; b[2] -= M(2, 5) * b[5]; b[2] -= M(2, 6) * b[6]; b[2] -= M(2, 7) * b[7]; b[2] /= M(2, 2); interp += b[2] * (X[2] - X[N]).zw; b[1] -= M(1, 2) * b[2]; b[1] -= M(1, 3) * b[3]; b[1] -= M(1, 4) * b[4]; b[1] -= M(1, 5) * b[5]; b[1] -= M(1, 6) * b[6]; b[1] -= M(1, 7) * b[7]; b[1] /= M(1, 1); interp += b[1] * (X[1] - X[N]).zw; b[0] -= M(0, 1) * b[1]; b[0] -= M(0, 2) * b[2]; b[0] -= M(0, 3) * b[3]; b[0] -= M(0, 4) * b[4]; b[0] -= M(0, 5) * b[5]; b[0] -= M(0, 6) * b[6]; b[0] -= M(0, 7) * b[7]; b[0] /= M(0, 0); interp += b[0] * (X[0] - X[N]).zw; return interp.xyxy; }