securityos/node_modules/@jest/test-sequencer/build/index.js

289 lines
8.7 KiB
JavaScript

'use strict';
Object.defineProperty(exports, '__esModule', {
value: true
});
exports.default = void 0;
function crypto() {
const data = _interopRequireWildcard(require('crypto'));
crypto = function () {
return data;
};
return data;
}
function path() {
const data = _interopRequireWildcard(require('path'));
path = function () {
return data;
};
return data;
}
function fs() {
const data = _interopRequireWildcard(require('graceful-fs'));
fs = function () {
return data;
};
return data;
}
function _slash() {
const data = _interopRequireDefault(require('slash'));
_slash = function () {
return data;
};
return data;
}
function _jestHasteMap() {
const data = _interopRequireDefault(require('jest-haste-map'));
_jestHasteMap = function () {
return data;
};
return data;
}
function _interopRequireDefault(obj) {
return obj && obj.__esModule ? obj : {default: obj};
}
function _getRequireWildcardCache(nodeInterop) {
if (typeof WeakMap !== 'function') return null;
var cacheBabelInterop = new WeakMap();
var cacheNodeInterop = new WeakMap();
return (_getRequireWildcardCache = function (nodeInterop) {
return nodeInterop ? cacheNodeInterop : cacheBabelInterop;
})(nodeInterop);
}
function _interopRequireWildcard(obj, nodeInterop) {
if (!nodeInterop && obj && obj.__esModule) {
return obj;
}
if (obj === null || (typeof obj !== 'object' && typeof obj !== 'function')) {
return {default: obj};
}
var cache = _getRequireWildcardCache(nodeInterop);
if (cache && cache.has(obj)) {
return cache.get(obj);
}
var newObj = {};
var hasPropertyDescriptor =
Object.defineProperty && Object.getOwnPropertyDescriptor;
for (var key in obj) {
if (key !== 'default' && Object.prototype.hasOwnProperty.call(obj, key)) {
var desc = hasPropertyDescriptor
? Object.getOwnPropertyDescriptor(obj, key)
: null;
if (desc && (desc.get || desc.set)) {
Object.defineProperty(newObj, key, desc);
} else {
newObj[key] = obj[key];
}
}
}
newObj.default = obj;
if (cache) {
cache.set(obj, newObj);
}
return newObj;
}
/**
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
const FAIL = 0;
const SUCCESS = 1;
/**
* The TestSequencer will ultimately decide which tests should run first.
* It is responsible for storing and reading from a local cache
* map that stores context information for a given test, such as how long it
* took to run during the last run and if it has failed or not.
* Such information is used on:
* TestSequencer.sort(tests: Array<Test>)
* to sort the order of the provided tests.
*
* After the results are collected,
* TestSequencer.cacheResults(tests: Array<Test>, results: AggregatedResult)
* is called to store/update this information on the cache map.
*/
class TestSequencer {
_cache = new Map();
_getCachePath(testContext) {
const {config} = testContext;
const HasteMapClass = _jestHasteMap().default.getStatic(config);
return HasteMapClass.getCacheFilePath(
config.cacheDirectory,
`perf-cache-${config.id}`
);
}
_getCache(test) {
const {context} = test;
if (!this._cache.has(context) && context.config.cache) {
const cachePath = this._getCachePath(context);
if (fs().existsSync(cachePath)) {
try {
this._cache.set(
context,
JSON.parse(fs().readFileSync(cachePath, 'utf8'))
);
} catch {}
}
}
let cache = this._cache.get(context);
if (!cache) {
cache = {};
this._cache.set(context, cache);
}
return cache;
}
_shardPosition(options) {
const shardRest = options.suiteLength % options.shardCount;
const ratio = options.suiteLength / options.shardCount;
return new Array(options.shardIndex)
.fill(true)
.reduce((acc, _, shardIndex) => {
const dangles = shardIndex < shardRest;
const shardSize = dangles ? Math.ceil(ratio) : Math.floor(ratio);
return acc + shardSize;
}, 0);
}
/**
* Select tests for shard requested via --shard=shardIndex/shardCount
* Sharding is applied before sorting
*
* @param tests All tests
* @param options shardIndex and shardIndex to select
*
* @example
* ```typescript
* class CustomSequencer extends Sequencer {
* shard(tests, { shardIndex, shardCount }) {
* const shardSize = Math.ceil(tests.length / options.shardCount);
* const shardStart = shardSize * (options.shardIndex - 1);
* const shardEnd = shardSize * options.shardIndex;
* return [...tests]
* .sort((a, b) => (a.path > b.path ? 1 : -1))
* .slice(shardStart, shardEnd);
* }
* }
* ```
*/
shard(tests, options) {
const shardStart = this._shardPosition({
shardCount: options.shardCount,
shardIndex: options.shardIndex - 1,
suiteLength: tests.length
});
const shardEnd = this._shardPosition({
shardCount: options.shardCount,
shardIndex: options.shardIndex,
suiteLength: tests.length
});
return tests
.map(test => {
const relativeTestPath = path().posix.relative(
(0, _slash().default)(test.context.config.rootDir),
(0, _slash().default)(test.path)
);
return {
hash: crypto()
.createHash('sha1')
.update(relativeTestPath)
.digest('hex'),
test
};
})
.sort((a, b) => (a.hash < b.hash ? -1 : a.hash > b.hash ? 1 : 0))
.slice(shardStart, shardEnd)
.map(result => result.test);
}
/**
* Sort test to determine order of execution
* Sorting is applied after sharding
* @param tests
*
* ```typescript
* class CustomSequencer extends Sequencer {
* sort(tests) {
* const copyTests = Array.from(tests);
* return [...tests].sort((a, b) => (a.path > b.path ? 1 : -1));
* }
* }
* ```
*/
sort(tests) {
/**
* Sorting tests is very important because it has a great impact on the
* user-perceived responsiveness and speed of the test run.
*
* If such information is on cache, tests are sorted based on:
* -> Has it failed during the last run ?
* Since it's important to provide the most expected feedback as quickly
* as possible.
* -> How long it took to run ?
* Because running long tests first is an effort to minimize worker idle
* time at the end of a long test run.
* And if that information is not available they are sorted based on file size
* since big test files usually take longer to complete.
*
* Note that a possible improvement would be to analyse other information
* from the file other than its size.
*
*/
const stats = {};
const fileSize = ({path, context: {hasteFS}}) =>
stats[path] || (stats[path] = hasteFS.getSize(path) ?? 0);
tests.forEach(test => {
test.duration = this.time(test);
});
return tests.sort((testA, testB) => {
const failedA = this.hasFailed(testA);
const failedB = this.hasFailed(testB);
const hasTimeA = testA.duration != null;
if (failedA !== failedB) {
return failedA === true ? -1 : 1;
} else if (hasTimeA != (testB.duration != null)) {
// If only one of two tests has timing information, run it last
return hasTimeA ? 1 : -1;
} else if (testA.duration != null && testB.duration != null) {
return testA.duration < testB.duration ? 1 : -1;
} else {
return fileSize(testA) < fileSize(testB) ? 1 : -1;
}
});
}
allFailedTests(tests) {
const hasFailed = (cache, test) => cache[test.path]?.[0] === FAIL;
return this.sort(
tests.filter(test => hasFailed(this._getCache(test), test))
);
}
cacheResults(tests, results) {
const map = Object.create(null);
tests.forEach(test => (map[test.path] = test));
results.testResults.forEach(testResult => {
const test = map[testResult.testFilePath];
if (test != null && !testResult.skipped) {
const cache = this._getCache(test);
const perf = testResult.perfStats;
cache[testResult.testFilePath] = [
testResult.numFailingTests ? FAIL : SUCCESS,
perf.runtime || 0
];
}
});
this._cache.forEach((cache, context) =>
fs().writeFileSync(this._getCachePath(context), JSON.stringify(cache))
);
}
hasFailed(test) {
const cache = this._getCache(test);
return cache[test.path]?.[0] === FAIL;
}
time(test) {
const cache = this._getCache(test);
return cache[test.path]?.[1];
}
}
exports.default = TestSequencer;