361 lines
13 KiB
JavaScript
361 lines
13 KiB
JavaScript
/*!
|
|
* lunr.Builder
|
|
* Copyright (C) @YEAR Oliver Nightingale
|
|
*/
|
|
|
|
/**
|
|
* lunr.Builder performs indexing on a set of documents and
|
|
* returns instances of lunr.Index ready for querying.
|
|
*
|
|
* All configuration of the index is done via the builder, the
|
|
* fields to index, the document reference, the text processing
|
|
* pipeline and document scoring parameters are all set on the
|
|
* builder before indexing.
|
|
*
|
|
* @constructor
|
|
* @property {string} _ref - Internal reference to the document reference field.
|
|
* @property {string[]} _fields - Internal reference to the document fields to index.
|
|
* @property {object} invertedIndex - The inverted index maps terms to document fields.
|
|
* @property {object} documentTermFrequencies - Keeps track of document term frequencies.
|
|
* @property {object} documentLengths - Keeps track of the length of documents added to the index.
|
|
* @property {lunr.tokenizer} tokenizer - Function for splitting strings into tokens for indexing.
|
|
* @property {lunr.Pipeline} pipeline - The pipeline performs text processing on tokens before indexing.
|
|
* @property {lunr.Pipeline} searchPipeline - A pipeline for processing search terms before querying the index.
|
|
* @property {number} documentCount - Keeps track of the total number of documents indexed.
|
|
* @property {number} _b - A parameter to control field length normalization, setting this to 0 disabled normalization, 1 fully normalizes field lengths, the default value is 0.75.
|
|
* @property {number} _k1 - A parameter to control how quickly an increase in term frequency results in term frequency saturation, the default value is 1.2.
|
|
* @property {number} termIndex - A counter incremented for each unique term, used to identify a terms position in the vector space.
|
|
* @property {array} metadataWhitelist - A list of metadata keys that have been whitelisted for entry in the index.
|
|
*/
|
|
lunr.Builder = function () {
|
|
this._ref = "id"
|
|
this._fields = Object.create(null)
|
|
this._documents = Object.create(null)
|
|
this.invertedIndex = Object.create(null)
|
|
this.fieldTermFrequencies = {}
|
|
this.fieldLengths = {}
|
|
this.tokenizer = lunr.tokenizer
|
|
this.pipeline = new lunr.Pipeline
|
|
this.searchPipeline = new lunr.Pipeline
|
|
this.documentCount = 0
|
|
this._b = 0.75
|
|
this._k1 = 1.2
|
|
this.termIndex = 0
|
|
this.metadataWhitelist = []
|
|
}
|
|
|
|
/**
|
|
* Sets the document field used as the document reference. Every document must have this field.
|
|
* The type of this field in the document should be a string, if it is not a string it will be
|
|
* coerced into a string by calling toString.
|
|
*
|
|
* The default ref is 'id'.
|
|
*
|
|
* The ref should _not_ be changed during indexing, it should be set before any documents are
|
|
* added to the index. Changing it during indexing can lead to inconsistent results.
|
|
*
|
|
* @param {string} ref - The name of the reference field in the document.
|
|
*/
|
|
lunr.Builder.prototype.ref = function (ref) {
|
|
this._ref = ref
|
|
}
|
|
|
|
/**
|
|
* A function that is used to extract a field from a document.
|
|
*
|
|
* Lunr expects a field to be at the top level of a document, if however the field
|
|
* is deeply nested within a document an extractor function can be used to extract
|
|
* the right field for indexing.
|
|
*
|
|
* @callback fieldExtractor
|
|
* @param {object} doc - The document being added to the index.
|
|
* @returns {?(string|object|object[])} obj - The object that will be indexed for this field.
|
|
* @example <caption>Extracting a nested field</caption>
|
|
* function (doc) { return doc.nested.field }
|
|
*/
|
|
|
|
/**
|
|
* Adds a field to the list of document fields that will be indexed. Every document being
|
|
* indexed should have this field. Null values for this field in indexed documents will
|
|
* not cause errors but will limit the chance of that document being retrieved by searches.
|
|
*
|
|
* All fields should be added before adding documents to the index. Adding fields after
|
|
* a document has been indexed will have no effect on already indexed documents.
|
|
*
|
|
* Fields can be boosted at build time. This allows terms within that field to have more
|
|
* importance when ranking search results. Use a field boost to specify that matches within
|
|
* one field are more important than other fields.
|
|
*
|
|
* @param {string} fieldName - The name of a field to index in all documents.
|
|
* @param {object} attributes - Optional attributes associated with this field.
|
|
* @param {number} [attributes.boost=1] - Boost applied to all terms within this field.
|
|
* @param {fieldExtractor} [attributes.extractor] - Function to extract a field from a document.
|
|
* @throws {RangeError} fieldName cannot contain unsupported characters '/'
|
|
*/
|
|
lunr.Builder.prototype.field = function (fieldName, attributes) {
|
|
if (/\//.test(fieldName)) {
|
|
throw new RangeError ("Field '" + fieldName + "' contains illegal character '/'")
|
|
}
|
|
|
|
this._fields[fieldName] = attributes || {}
|
|
}
|
|
|
|
/**
|
|
* A parameter to tune the amount of field length normalisation that is applied when
|
|
* calculating relevance scores. A value of 0 will completely disable any normalisation
|
|
* and a value of 1 will fully normalise field lengths. The default is 0.75. Values of b
|
|
* will be clamped to the range 0 - 1.
|
|
*
|
|
* @param {number} number - The value to set for this tuning parameter.
|
|
*/
|
|
lunr.Builder.prototype.b = function (number) {
|
|
if (number < 0) {
|
|
this._b = 0
|
|
} else if (number > 1) {
|
|
this._b = 1
|
|
} else {
|
|
this._b = number
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A parameter that controls the speed at which a rise in term frequency results in term
|
|
* frequency saturation. The default value is 1.2. Setting this to a higher value will give
|
|
* slower saturation levels, a lower value will result in quicker saturation.
|
|
*
|
|
* @param {number} number - The value to set for this tuning parameter.
|
|
*/
|
|
lunr.Builder.prototype.k1 = function (number) {
|
|
this._k1 = number
|
|
}
|
|
|
|
/**
|
|
* Adds a document to the index.
|
|
*
|
|
* Before adding fields to the index the index should have been fully setup, with the document
|
|
* ref and all fields to index already having been specified.
|
|
*
|
|
* The document must have a field name as specified by the ref (by default this is 'id') and
|
|
* it should have all fields defined for indexing, though null or undefined values will not
|
|
* cause errors.
|
|
*
|
|
* Entire documents can be boosted at build time. Applying a boost to a document indicates that
|
|
* this document should rank higher in search results than other documents.
|
|
*
|
|
* @param {object} doc - The document to add to the index.
|
|
* @param {object} attributes - Optional attributes associated with this document.
|
|
* @param {number} [attributes.boost=1] - Boost applied to all terms within this document.
|
|
*/
|
|
lunr.Builder.prototype.add = function (doc, attributes) {
|
|
var docRef = doc[this._ref],
|
|
fields = Object.keys(this._fields)
|
|
|
|
this._documents[docRef] = attributes || {}
|
|
this.documentCount += 1
|
|
|
|
for (var i = 0; i < fields.length; i++) {
|
|
var fieldName = fields[i],
|
|
extractor = this._fields[fieldName].extractor,
|
|
field = extractor ? extractor(doc) : doc[fieldName],
|
|
tokens = this.tokenizer(field, {
|
|
fields: [fieldName]
|
|
}),
|
|
terms = this.pipeline.run(tokens),
|
|
fieldRef = new lunr.FieldRef (docRef, fieldName),
|
|
fieldTerms = Object.create(null)
|
|
|
|
this.fieldTermFrequencies[fieldRef] = fieldTerms
|
|
this.fieldLengths[fieldRef] = 0
|
|
|
|
// store the length of this field for this document
|
|
this.fieldLengths[fieldRef] += terms.length
|
|
|
|
// calculate term frequencies for this field
|
|
for (var j = 0; j < terms.length; j++) {
|
|
var term = terms[j]
|
|
|
|
if (fieldTerms[term] == undefined) {
|
|
fieldTerms[term] = 0
|
|
}
|
|
|
|
fieldTerms[term] += 1
|
|
|
|
// add to inverted index
|
|
// create an initial posting if one doesn't exist
|
|
if (this.invertedIndex[term] == undefined) {
|
|
var posting = Object.create(null)
|
|
posting["_index"] = this.termIndex
|
|
this.termIndex += 1
|
|
|
|
for (var k = 0; k < fields.length; k++) {
|
|
posting[fields[k]] = Object.create(null)
|
|
}
|
|
|
|
this.invertedIndex[term] = posting
|
|
}
|
|
|
|
// add an entry for this term/fieldName/docRef to the invertedIndex
|
|
if (this.invertedIndex[term][fieldName][docRef] == undefined) {
|
|
this.invertedIndex[term][fieldName][docRef] = Object.create(null)
|
|
}
|
|
|
|
// store all whitelisted metadata about this token in the
|
|
// inverted index
|
|
for (var l = 0; l < this.metadataWhitelist.length; l++) {
|
|
var metadataKey = this.metadataWhitelist[l],
|
|
metadata = term.metadata[metadataKey]
|
|
|
|
if (this.invertedIndex[term][fieldName][docRef][metadataKey] == undefined) {
|
|
this.invertedIndex[term][fieldName][docRef][metadataKey] = []
|
|
}
|
|
|
|
this.invertedIndex[term][fieldName][docRef][metadataKey].push(metadata)
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculates the average document length for this index
|
|
*
|
|
* @private
|
|
*/
|
|
lunr.Builder.prototype.calculateAverageFieldLengths = function () {
|
|
|
|
var fieldRefs = Object.keys(this.fieldLengths),
|
|
numberOfFields = fieldRefs.length,
|
|
accumulator = {},
|
|
documentsWithField = {}
|
|
|
|
for (var i = 0; i < numberOfFields; i++) {
|
|
var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]),
|
|
field = fieldRef.fieldName
|
|
|
|
documentsWithField[field] || (documentsWithField[field] = 0)
|
|
documentsWithField[field] += 1
|
|
|
|
accumulator[field] || (accumulator[field] = 0)
|
|
accumulator[field] += this.fieldLengths[fieldRef]
|
|
}
|
|
|
|
var fields = Object.keys(this._fields)
|
|
|
|
for (var i = 0; i < fields.length; i++) {
|
|
var fieldName = fields[i]
|
|
accumulator[fieldName] = accumulator[fieldName] / documentsWithField[fieldName]
|
|
}
|
|
|
|
this.averageFieldLength = accumulator
|
|
}
|
|
|
|
/**
|
|
* Builds a vector space model of every document using lunr.Vector
|
|
*
|
|
* @private
|
|
*/
|
|
lunr.Builder.prototype.createFieldVectors = function () {
|
|
var fieldVectors = {},
|
|
fieldRefs = Object.keys(this.fieldTermFrequencies),
|
|
fieldRefsLength = fieldRefs.length,
|
|
termIdfCache = Object.create(null)
|
|
|
|
for (var i = 0; i < fieldRefsLength; i++) {
|
|
var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]),
|
|
fieldName = fieldRef.fieldName,
|
|
fieldLength = this.fieldLengths[fieldRef],
|
|
fieldVector = new lunr.Vector,
|
|
termFrequencies = this.fieldTermFrequencies[fieldRef],
|
|
terms = Object.keys(termFrequencies),
|
|
termsLength = terms.length
|
|
|
|
|
|
var fieldBoost = this._fields[fieldName].boost || 1,
|
|
docBoost = this._documents[fieldRef.docRef].boost || 1
|
|
|
|
for (var j = 0; j < termsLength; j++) {
|
|
var term = terms[j],
|
|
tf = termFrequencies[term],
|
|
termIndex = this.invertedIndex[term]._index,
|
|
idf, score, scoreWithPrecision
|
|
|
|
if (termIdfCache[term] === undefined) {
|
|
idf = lunr.idf(this.invertedIndex[term], this.documentCount)
|
|
termIdfCache[term] = idf
|
|
} else {
|
|
idf = termIdfCache[term]
|
|
}
|
|
|
|
score = idf * ((this._k1 + 1) * tf) / (this._k1 * (1 - this._b + this._b * (fieldLength / this.averageFieldLength[fieldName])) + tf)
|
|
score *= fieldBoost
|
|
score *= docBoost
|
|
scoreWithPrecision = Math.round(score * 1000) / 1000
|
|
// Converts 1.23456789 to 1.234.
|
|
// Reducing the precision so that the vectors take up less
|
|
// space when serialised. Doing it now so that they behave
|
|
// the same before and after serialisation. Also, this is
|
|
// the fastest approach to reducing a number's precision in
|
|
// JavaScript.
|
|
|
|
fieldVector.insert(termIndex, scoreWithPrecision)
|
|
}
|
|
|
|
fieldVectors[fieldRef] = fieldVector
|
|
}
|
|
|
|
this.fieldVectors = fieldVectors
|
|
}
|
|
|
|
/**
|
|
* Creates a token set of all tokens in the index using lunr.TokenSet
|
|
*
|
|
* @private
|
|
*/
|
|
lunr.Builder.prototype.createTokenSet = function () {
|
|
this.tokenSet = lunr.TokenSet.fromArray(
|
|
Object.keys(this.invertedIndex).sort()
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Builds the index, creating an instance of lunr.Index.
|
|
*
|
|
* This completes the indexing process and should only be called
|
|
* once all documents have been added to the index.
|
|
*
|
|
* @returns {lunr.Index}
|
|
*/
|
|
lunr.Builder.prototype.build = function () {
|
|
this.calculateAverageFieldLengths()
|
|
this.createFieldVectors()
|
|
this.createTokenSet()
|
|
|
|
return new lunr.Index({
|
|
invertedIndex: this.invertedIndex,
|
|
fieldVectors: this.fieldVectors,
|
|
tokenSet: this.tokenSet,
|
|
fields: Object.keys(this._fields),
|
|
pipeline: this.searchPipeline
|
|
})
|
|
}
|
|
|
|
/**
|
|
* Applies a plugin to the index builder.
|
|
*
|
|
* A plugin is a function that is called with the index builder as its context.
|
|
* Plugins can be used to customise or extend the behaviour of the index
|
|
* in some way. A plugin is just a function, that encapsulated the custom
|
|
* behaviour that should be applied when building the index.
|
|
*
|
|
* The plugin function will be called with the index builder as its argument, additional
|
|
* arguments can also be passed when calling use. The function will be called
|
|
* with the index builder as its context.
|
|
*
|
|
* @param {Function} plugin The plugin to apply.
|
|
*/
|
|
lunr.Builder.prototype.use = function (fn) {
|
|
var args = Array.prototype.slice.call(arguments, 1)
|
|
args.unshift(this)
|
|
fn.apply(this, args)
|
|
}
|