securityos/node_modules/fflate/esm/index.mjs

2562 lines
84 KiB
JavaScript

import { createRequire } from 'module';
var require = createRequire('/');
// DEFLATE is a complex format; to read this code, you should probably check the RFC first:
// https://tools.ietf.org/html/rfc1951
// You may also wish to take a look at the guide I made about this program:
// https://gist.github.com/101arrowz/253f31eb5abc3d9275ab943003ffecad
// Some of the following code is similar to that of UZIP.js:
// https://github.com/photopea/UZIP.js
// However, the vast majority of the codebase has diverged from UZIP.js to increase performance and reduce bundle size.
// Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint
// is better for memory in most engines (I *think*).
// Mediocre shim
var Worker;
var workerAdd = ";var __w=require('worker_threads');__w.parentPort.on('message',function(m){onmessage({data:m})}),postMessage=function(m,t){__w.parentPort.postMessage(m,t)},close=process.exit;self=global";
try {
Worker = require('worker_threads').Worker;
}
catch (e) {
}
var wk = Worker ? function (c, _, msg, transfer, cb) {
var done = false;
var w = new Worker(c + workerAdd, { eval: true })
.on('error', function (e) { return cb(e, null); })
.on('message', function (m) { return cb(null, m); })
.on('exit', function (c) {
if (c && !done)
cb(new Error('exited with code ' + c), null);
});
w.postMessage(msg, transfer);
w.terminate = function () {
done = true;
return Worker.prototype.terminate.call(w);
};
return w;
} : function (_, __, ___, ____, cb) {
setImmediate(function () { return cb(new Error('async operations unsupported - update to Node 12+ (or Node 10-11 with the --experimental-worker CLI flag)'), null); });
var NOP = function () { };
return {
terminate: NOP,
postMessage: NOP
};
};
// aliases for shorter compressed code (most minifers don't do this)
var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array;
// fixed length extra bits
var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]);
// fixed distance extra bits
// see fleb note
var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]);
// code length index map
var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]);
// get base, reverse index map from extra bits
var freb = function (eb, start) {
var b = new u16(31);
for (var i = 0; i < 31; ++i) {
b[i] = start += 1 << eb[i - 1];
}
// numbers here are at max 18 bits
var r = new u32(b[30]);
for (var i = 1; i < 30; ++i) {
for (var j = b[i]; j < b[i + 1]; ++j) {
r[j] = ((j - b[i]) << 5) | i;
}
}
return [b, r];
};
var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1];
// we can ignore the fact that the other numbers are wrong; they never happen anyway
fl[28] = 258, revfl[258] = 28;
var _b = freb(fdeb, 0), fd = _b[0], revfd = _b[1];
// map of value to reverse (assuming 16 bits)
var rev = new u16(32768);
for (var i = 0; i < 32768; ++i) {
// reverse table algorithm from SO
var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1);
x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2);
x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4);
rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1;
}
// create huffman tree from u8 "map": index -> code length for code index
// mb (max bits) must be at most 15
// TODO: optimize/split up?
var hMap = (function (cd, mb, r) {
var s = cd.length;
// index
var i = 0;
// u16 "map": index -> # of codes with bit length = index
var l = new u16(mb);
// length of cd must be 288 (total # of codes)
for (; i < s; ++i) {
if (cd[i])
++l[cd[i] - 1];
}
// u16 "map": index -> minimum code for bit length = index
var le = new u16(mb);
for (i = 0; i < mb; ++i) {
le[i] = (le[i - 1] + l[i - 1]) << 1;
}
var co;
if (r) {
// u16 "map": index -> number of actual bits, symbol for code
co = new u16(1 << mb);
// bits to remove for reverser
var rvb = 15 - mb;
for (i = 0; i < s; ++i) {
// ignore 0 lengths
if (cd[i]) {
// num encoding both symbol and bits read
var sv = (i << 4) | cd[i];
// free bits
var r_1 = mb - cd[i];
// start value
var v = le[cd[i] - 1]++ << r_1;
// m is end value
for (var m = v | ((1 << r_1) - 1); v <= m; ++v) {
// every 16 bit value starting with the code yields the same result
co[rev[v] >>> rvb] = sv;
}
}
}
}
else {
co = new u16(s);
for (i = 0; i < s; ++i) {
if (cd[i]) {
co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]);
}
}
}
return co;
});
// fixed length tree
var flt = new u8(288);
for (var i = 0; i < 144; ++i)
flt[i] = 8;
for (var i = 144; i < 256; ++i)
flt[i] = 9;
for (var i = 256; i < 280; ++i)
flt[i] = 7;
for (var i = 280; i < 288; ++i)
flt[i] = 8;
// fixed distance tree
var fdt = new u8(32);
for (var i = 0; i < 32; ++i)
fdt[i] = 5;
// fixed length map
var flm = /*#__PURE__*/ hMap(flt, 9, 0), flrm = /*#__PURE__*/ hMap(flt, 9, 1);
// fixed distance map
var fdm = /*#__PURE__*/ hMap(fdt, 5, 0), fdrm = /*#__PURE__*/ hMap(fdt, 5, 1);
// find max of array
var max = function (a) {
var m = a[0];
for (var i = 1; i < a.length; ++i) {
if (a[i] > m)
m = a[i];
}
return m;
};
// read d, starting at bit p and mask with m
var bits = function (d, p, m) {
var o = (p / 8) | 0;
return ((d[o] | (d[o + 1] << 8)) >> (p & 7)) & m;
};
// read d, starting at bit p continuing for at least 16 bits
var bits16 = function (d, p) {
var o = (p / 8) | 0;
return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16)) >> (p & 7));
};
// get end of byte
var shft = function (p) { return ((p + 7) / 8) | 0; };
// typed array slice - allows garbage collector to free original reference,
// while being more compatible than .slice
var slc = function (v, s, e) {
if (s == null || s < 0)
s = 0;
if (e == null || e > v.length)
e = v.length;
// can't use .constructor in case user-supplied
var n = new (v.BYTES_PER_ELEMENT == 2 ? u16 : v.BYTES_PER_ELEMENT == 4 ? u32 : u8)(e - s);
n.set(v.subarray(s, e));
return n;
};
/**
* Codes for errors generated within this library
*/
export var FlateErrorCode = {
UnexpectedEOF: 0,
InvalidBlockType: 1,
InvalidLengthLiteral: 2,
InvalidDistance: 3,
StreamFinished: 4,
NoStreamHandler: 5,
InvalidHeader: 6,
NoCallback: 7,
InvalidUTF8: 8,
ExtraFieldTooLong: 9,
InvalidDate: 10,
FilenameTooLong: 11,
StreamFinishing: 12,
InvalidZipData: 13,
UnknownCompressionMethod: 14
};
// error codes
var ec = [
'unexpected EOF',
'invalid block type',
'invalid length/literal',
'invalid distance',
'stream finished',
'no stream handler',
,
'no callback',
'invalid UTF-8 data',
'extra field too long',
'date not in range 1980-2099',
'filename too long',
'stream finishing',
'invalid zip data'
// determined by unknown compression method
];
;
var err = function (ind, msg, nt) {
var e = new Error(msg || ec[ind]);
e.code = ind;
if (Error.captureStackTrace)
Error.captureStackTrace(e, err);
if (!nt)
throw e;
return e;
};
// expands raw DEFLATE data
var inflt = function (dat, buf, st) {
// source length
var sl = dat.length;
if (!sl || (st && st.f && !st.l))
return buf || new u8(0);
// have to estimate size
var noBuf = !buf || st;
// no state
var noSt = !st || st.i;
if (!st)
st = {};
// Assumes roughly 33% compression ratio average
if (!buf)
buf = new u8(sl * 3);
// ensure buffer can fit at least l elements
var cbuf = function (l) {
var bl = buf.length;
// need to increase size to fit
if (l > bl) {
// Double or set to necessary, whichever is greater
var nbuf = new u8(Math.max(bl * 2, l));
nbuf.set(buf);
buf = nbuf;
}
};
// last chunk bitpos bytes
var final = st.f || 0, pos = st.p || 0, bt = st.b || 0, lm = st.l, dm = st.d, lbt = st.m, dbt = st.n;
// total bits
var tbts = sl * 8;
do {
if (!lm) {
// BFINAL - this is only 1 when last chunk is next
final = bits(dat, pos, 1);
// type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman
var type = bits(dat, pos + 1, 3);
pos += 3;
if (!type) {
// go to end of byte boundary
var s = shft(pos) + 4, l = dat[s - 4] | (dat[s - 3] << 8), t = s + l;
if (t > sl) {
if (noSt)
err(0);
break;
}
// ensure size
if (noBuf)
cbuf(bt + l);
// Copy over uncompressed data
buf.set(dat.subarray(s, t), bt);
// Get new bitpos, update byte count
st.b = bt += l, st.p = pos = t * 8, st.f = final;
continue;
}
else if (type == 1)
lm = flrm, dm = fdrm, lbt = 9, dbt = 5;
else if (type == 2) {
// literal lengths
var hLit = bits(dat, pos, 31) + 257, hcLen = bits(dat, pos + 10, 15) + 4;
var tl = hLit + bits(dat, pos + 5, 31) + 1;
pos += 14;
// length+distance tree
var ldt = new u8(tl);
// code length tree
var clt = new u8(19);
for (var i = 0; i < hcLen; ++i) {
// use index map to get real code
clt[clim[i]] = bits(dat, pos + i * 3, 7);
}
pos += hcLen * 3;
// code lengths bits
var clb = max(clt), clbmsk = (1 << clb) - 1;
// code lengths map
var clm = hMap(clt, clb, 1);
for (var i = 0; i < tl;) {
var r = clm[bits(dat, pos, clbmsk)];
// bits read
pos += r & 15;
// symbol
var s = r >>> 4;
// code length to copy
if (s < 16) {
ldt[i++] = s;
}
else {
// copy count
var c = 0, n = 0;
if (s == 16)
n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1];
else if (s == 17)
n = 3 + bits(dat, pos, 7), pos += 3;
else if (s == 18)
n = 11 + bits(dat, pos, 127), pos += 7;
while (n--)
ldt[i++] = c;
}
}
// length tree distance tree
var lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit);
// max length bits
lbt = max(lt);
// max dist bits
dbt = max(dt);
lm = hMap(lt, lbt, 1);
dm = hMap(dt, dbt, 1);
}
else
err(1);
if (pos > tbts) {
if (noSt)
err(0);
break;
}
}
// Make sure the buffer can hold this + the largest possible addition
// Maximum chunk size (practically, theoretically infinite) is 2^17;
if (noBuf)
cbuf(bt + 131072);
var lms = (1 << lbt) - 1, dms = (1 << dbt) - 1;
var lpos = pos;
for (;; lpos = pos) {
// bits read, code
var c = lm[bits16(dat, pos) & lms], sym = c >>> 4;
pos += c & 15;
if (pos > tbts) {
if (noSt)
err(0);
break;
}
if (!c)
err(2);
if (sym < 256)
buf[bt++] = sym;
else if (sym == 256) {
lpos = pos, lm = null;
break;
}
else {
var add = sym - 254;
// no extra bits needed if less
if (sym > 264) {
// index
var i = sym - 257, b = fleb[i];
add = bits(dat, pos, (1 << b) - 1) + fl[i];
pos += b;
}
// dist
var d = dm[bits16(dat, pos) & dms], dsym = d >>> 4;
if (!d)
err(3);
pos += d & 15;
var dt = fd[dsym];
if (dsym > 3) {
var b = fdeb[dsym];
dt += bits16(dat, pos) & ((1 << b) - 1), pos += b;
}
if (pos > tbts) {
if (noSt)
err(0);
break;
}
if (noBuf)
cbuf(bt + 131072);
var end = bt + add;
for (; bt < end; bt += 4) {
buf[bt] = buf[bt - dt];
buf[bt + 1] = buf[bt + 1 - dt];
buf[bt + 2] = buf[bt + 2 - dt];
buf[bt + 3] = buf[bt + 3 - dt];
}
bt = end;
}
}
st.l = lm, st.p = lpos, st.b = bt, st.f = final;
if (lm)
final = 1, st.m = lbt, st.d = dm, st.n = dbt;
} while (!final);
return bt == buf.length ? buf : slc(buf, 0, bt);
};
// starting at p, write the minimum number of bits that can hold v to d
var wbits = function (d, p, v) {
v <<= p & 7;
var o = (p / 8) | 0;
d[o] |= v;
d[o + 1] |= v >>> 8;
};
// starting at p, write the minimum number of bits (>8) that can hold v to d
var wbits16 = function (d, p, v) {
v <<= p & 7;
var o = (p / 8) | 0;
d[o] |= v;
d[o + 1] |= v >>> 8;
d[o + 2] |= v >>> 16;
};
// creates code lengths from a frequency table
var hTree = function (d, mb) {
// Need extra info to make a tree
var t = [];
for (var i = 0; i < d.length; ++i) {
if (d[i])
t.push({ s: i, f: d[i] });
}
var s = t.length;
var t2 = t.slice();
if (!s)
return [et, 0];
if (s == 1) {
var v = new u8(t[0].s + 1);
v[t[0].s] = 1;
return [v, 1];
}
t.sort(function (a, b) { return a.f - b.f; });
// after i2 reaches last ind, will be stopped
// freq must be greater than largest possible number of symbols
t.push({ s: -1, f: 25001 });
var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2;
t[0] = { s: -1, f: l.f + r.f, l: l, r: r };
// efficient algorithm from UZIP.js
// i0 is lookbehind, i2 is lookahead - after processing two low-freq
// symbols that combined have high freq, will start processing i2 (high-freq,
// non-composite) symbols instead
// see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/
while (i1 != s - 1) {
l = t[t[i0].f < t[i2].f ? i0++ : i2++];
r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++];
t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r };
}
var maxSym = t2[0].s;
for (var i = 1; i < s; ++i) {
if (t2[i].s > maxSym)
maxSym = t2[i].s;
}
// code lengths
var tr = new u16(maxSym + 1);
// max bits in tree
var mbt = ln(t[i1 - 1], tr, 0);
if (mbt > mb) {
// more algorithms from UZIP.js
// TODO: find out how this code works (debt)
// ind debt
var i = 0, dt = 0;
// left cost
var lft = mbt - mb, cst = 1 << lft;
t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; });
for (; i < s; ++i) {
var i2_1 = t2[i].s;
if (tr[i2_1] > mb) {
dt += cst - (1 << (mbt - tr[i2_1]));
tr[i2_1] = mb;
}
else
break;
}
dt >>>= lft;
while (dt > 0) {
var i2_2 = t2[i].s;
if (tr[i2_2] < mb)
dt -= 1 << (mb - tr[i2_2]++ - 1);
else
++i;
}
for (; i >= 0 && dt; --i) {
var i2_3 = t2[i].s;
if (tr[i2_3] == mb) {
--tr[i2_3];
++dt;
}
}
mbt = mb;
}
return [new u8(tr), mbt];
};
// get the max length and assign length codes
var ln = function (n, l, d) {
return n.s == -1
? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1))
: (l[n.s] = d);
};
// length codes generation
var lc = function (c) {
var s = c.length;
// Note that the semicolon was intentional
while (s && !c[--s])
;
var cl = new u16(++s);
// ind num streak
var cli = 0, cln = c[0], cls = 1;
var w = function (v) { cl[cli++] = v; };
for (var i = 1; i <= s; ++i) {
if (c[i] == cln && i != s)
++cls;
else {
if (!cln && cls > 2) {
for (; cls > 138; cls -= 138)
w(32754);
if (cls > 2) {
w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305);
cls = 0;
}
}
else if (cls > 3) {
w(cln), --cls;
for (; cls > 6; cls -= 6)
w(8304);
if (cls > 2)
w(((cls - 3) << 5) | 8208), cls = 0;
}
while (cls--)
w(cln);
cls = 1;
cln = c[i];
}
}
return [cl.subarray(0, cli), s];
};
// calculate the length of output from tree, code lengths
var clen = function (cf, cl) {
var l = 0;
for (var i = 0; i < cl.length; ++i)
l += cf[i] * cl[i];
return l;
};
// writes a fixed block
// returns the new bit pos
var wfblk = function (out, pos, dat) {
// no need to write 00 as type: TypedArray defaults to 0
var s = dat.length;
var o = shft(pos + 2);
out[o] = s & 255;
out[o + 1] = s >>> 8;
out[o + 2] = out[o] ^ 255;
out[o + 3] = out[o + 1] ^ 255;
for (var i = 0; i < s; ++i)
out[o + i + 4] = dat[i];
return (o + 4 + s) * 8;
};
// writes a block
var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) {
wbits(out, p++, final);
++lf[256];
var _a = hTree(lf, 15), dlt = _a[0], mlb = _a[1];
var _b = hTree(df, 15), ddt = _b[0], mdb = _b[1];
var _c = lc(dlt), lclt = _c[0], nlc = _c[1];
var _d = lc(ddt), lcdt = _d[0], ndc = _d[1];
var lcfreq = new u16(19);
for (var i = 0; i < lclt.length; ++i)
lcfreq[lclt[i] & 31]++;
for (var i = 0; i < lcdt.length; ++i)
lcfreq[lcdt[i] & 31]++;
var _e = hTree(lcfreq, 7), lct = _e[0], mlcb = _e[1];
var nlcc = 19;
for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc)
;
var flen = (bl + 5) << 3;
var ftlen = clen(lf, flt) + clen(df, fdt) + eb;
var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
if (flen <= ftlen && flen <= dtlen)
return wfblk(out, p, dat.subarray(bs, bs + bl));
var lm, ll, dm, dl;
wbits(out, p, 1 + (dtlen < ftlen)), p += 2;
if (dtlen < ftlen) {
lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt;
var llm = hMap(lct, mlcb, 0);
wbits(out, p, nlc - 257);
wbits(out, p + 5, ndc - 1);
wbits(out, p + 10, nlcc - 4);
p += 14;
for (var i = 0; i < nlcc; ++i)
wbits(out, p + 3 * i, lct[clim[i]]);
p += 3 * nlcc;
var lcts = [lclt, lcdt];
for (var it = 0; it < 2; ++it) {
var clct = lcts[it];
for (var i = 0; i < clct.length; ++i) {
var len = clct[i] & 31;
wbits(out, p, llm[len]), p += lct[len];
if (len > 15)
wbits(out, p, (clct[i] >>> 5) & 127), p += clct[i] >>> 12;
}
}
}
else {
lm = flm, ll = flt, dm = fdm, dl = fdt;
}
for (var i = 0; i < li; ++i) {
if (syms[i] > 255) {
var len = (syms[i] >>> 18) & 31;
wbits16(out, p, lm[len + 257]), p += ll[len + 257];
if (len > 7)
wbits(out, p, (syms[i] >>> 23) & 31), p += fleb[len];
var dst = syms[i] & 31;
wbits16(out, p, dm[dst]), p += dl[dst];
if (dst > 3)
wbits16(out, p, (syms[i] >>> 5) & 8191), p += fdeb[dst];
}
else {
wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
}
}
wbits16(out, p, lm[256]);
return p + ll[256];
};
// deflate options (nice << 13) | chain
var deo = /*#__PURE__*/ new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]);
// empty
var et = /*#__PURE__*/ new u8(0);
// compresses data into a raw DEFLATE buffer
var dflt = function (dat, lvl, plvl, pre, post, lst) {
var s = dat.length;
var o = new u8(pre + s + 5 * (1 + Math.ceil(s / 7000)) + post);
// writing to this writes to the output buffer
var w = o.subarray(pre, o.length - post);
var pos = 0;
if (!lvl || s < 8) {
for (var i = 0; i <= s; i += 65535) {
// end
var e = i + 65535;
if (e >= s) {
// write final block
w[pos >> 3] = lst;
}
pos = wfblk(w, pos + 1, dat.subarray(i, e));
}
}
else {
var opt = deo[lvl - 1];
var n = opt >>> 13, c = opt & 8191;
var msk_1 = (1 << plvl) - 1;
// prev 2-byte val map curr 2-byte val map
var prev = new u16(32768), head = new u16(msk_1 + 1);
var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1;
var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; };
// 24576 is an arbitrary number of maximum symbols per block
// 424 buffer for last block
var syms = new u32(25000);
// length/literal freq distance freq
var lf = new u16(288), df = new u16(32);
// l/lcnt exbits index l/lind waitdx bitpos
var lc_1 = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0;
for (; i < s; ++i) {
// hash value
// deopt when i > s - 3 - at end, deopt acceptable
var hv = hsh(i);
// index mod 32768 previous index mod
var imod = i & 32767, pimod = head[hv];
prev[imod] = pimod;
head[hv] = imod;
// We always should modify head and prev, but only add symbols if
// this data is not yet processed ("wait" for wait index)
if (wi <= i) {
// bytes remaining
var rem = s - i;
if ((lc_1 > 7000 || li > 24576) && rem > 423) {
pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
li = lc_1 = eb = 0, bs = i;
for (var j = 0; j < 286; ++j)
lf[j] = 0;
for (var j = 0; j < 30; ++j)
df[j] = 0;
}
// len dist chain
var l = 2, d = 0, ch_1 = c, dif = (imod - pimod) & 32767;
if (rem > 2 && hv == hsh(i - dif)) {
var maxn = Math.min(n, rem) - 1;
var maxd = Math.min(32767, i);
// max possible length
// not capped at dif because decompressors implement "rolling" index population
var ml = Math.min(258, rem);
while (dif <= maxd && --ch_1 && imod != pimod) {
if (dat[i + l] == dat[i + l - dif]) {
var nl = 0;
for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl)
;
if (nl > l) {
l = nl, d = dif;
// break out early when we reach "nice" (we are satisfied enough)
if (nl > maxn)
break;
// now, find the rarest 2-byte sequence within this
// length of literals and search for that instead.
// Much faster than just using the start
var mmd = Math.min(dif, nl - 2);
var md = 0;
for (var j = 0; j < mmd; ++j) {
var ti = (i - dif + j + 32768) & 32767;
var pti = prev[ti];
var cd = (ti - pti + 32768) & 32767;
if (cd > md)
md = cd, pimod = ti;
}
}
}
// check the previous match
imod = pimod, pimod = prev[imod];
dif += (imod - pimod + 32768) & 32767;
}
}
// d will be nonzero only when a match was found
if (d) {
// store both dist and len data in one Uint32
// Make sure this is recognized as a len/dist with 28th bit (2^28)
syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d];
var lin = revfl[l] & 31, din = revfd[d] & 31;
eb += fleb[lin] + fdeb[din];
++lf[257 + lin];
++df[din];
wi = i + l;
++lc_1;
}
else {
syms[li++] = dat[i];
++lf[dat[i]];
}
}
}
pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos);
// this is the easiest way to avoid needing to maintain state
if (!lst && pos & 7)
pos = wfblk(w, pos + 1, et);
}
return slc(o, 0, pre + shft(pos) + post);
};
// CRC32 table
var crct = /*#__PURE__*/ (function () {
var t = new Int32Array(256);
for (var i = 0; i < 256; ++i) {
var c = i, k = 9;
while (--k)
c = ((c & 1) && -306674912) ^ (c >>> 1);
t[i] = c;
}
return t;
})();
// CRC32
var crc = function () {
var c = -1;
return {
p: function (d) {
// closures have awful performance
var cr = c;
for (var i = 0; i < d.length; ++i)
cr = crct[(cr & 255) ^ d[i]] ^ (cr >>> 8);
c = cr;
},
d: function () { return ~c; }
};
};
// Alder32
var adler = function () {
var a = 1, b = 0;
return {
p: function (d) {
// closures have awful performance
var n = a, m = b;
var l = d.length | 0;
for (var i = 0; i != l;) {
var e = Math.min(i + 2655, l);
for (; i < e; ++i)
m += n += d[i];
n = (n & 65535) + 15 * (n >> 16), m = (m & 65535) + 15 * (m >> 16);
}
a = n, b = m;
},
d: function () {
a %= 65521, b %= 65521;
return (a & 255) << 24 | (a >>> 8) << 16 | (b & 255) << 8 | (b >>> 8);
}
};
};
;
// deflate with opts
var dopt = function (dat, opt, pre, post, st) {
return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : (12 + opt.mem), pre, post, !st);
};
// Walmart object spread
var mrg = function (a, b) {
var o = {};
for (var k in a)
o[k] = a[k];
for (var k in b)
o[k] = b[k];
return o;
};
// worker clone
// This is possibly the craziest part of the entire codebase, despite how simple it may seem.
// The only parameter to this function is a closure that returns an array of variables outside of the function scope.
// We're going to try to figure out the variable names used in the closure as strings because that is crucial for workerization.
// We will return an object mapping of true variable name to value (basically, the current scope as a JS object).
// The reason we can't just use the original variable names is minifiers mangling the toplevel scope.
// This took me three weeks to figure out how to do.
var wcln = function (fn, fnStr, td) {
var dt = fn();
var st = fn.toString();
var ks = st.slice(st.indexOf('[') + 1, st.lastIndexOf(']')).replace(/\s+/g, '').split(',');
for (var i = 0; i < dt.length; ++i) {
var v = dt[i], k = ks[i];
if (typeof v == 'function') {
fnStr += ';' + k + '=';
var st_1 = v.toString();
if (v.prototype) {
// for global objects
if (st_1.indexOf('[native code]') != -1) {
var spInd = st_1.indexOf(' ', 8) + 1;
fnStr += st_1.slice(spInd, st_1.indexOf('(', spInd));
}
else {
fnStr += st_1;
for (var t in v.prototype)
fnStr += ';' + k + '.prototype.' + t + '=' + v.prototype[t].toString();
}
}
else
fnStr += st_1;
}
else
td[k] = v;
}
return [fnStr, td];
};
var ch = [];
// clone bufs
var cbfs = function (v) {
var tl = [];
for (var k in v) {
if (v[k].buffer) {
tl.push((v[k] = new v[k].constructor(v[k])).buffer);
}
}
return tl;
};
// use a worker to execute code
var wrkr = function (fns, init, id, cb) {
var _a;
if (!ch[id]) {
var fnStr = '', td_1 = {}, m = fns.length - 1;
for (var i = 0; i < m; ++i)
_a = wcln(fns[i], fnStr, td_1), fnStr = _a[0], td_1 = _a[1];
ch[id] = wcln(fns[m], fnStr, td_1);
}
var td = mrg({}, ch[id][1]);
return wk(ch[id][0] + ';onmessage=function(e){for(var k in e.data)self[k]=e.data[k];onmessage=' + init.toString() + '}', id, td, cbfs(td), cb);
};
// base async inflate fn
var bInflt = function () { return [u8, u16, u32, fleb, fdeb, clim, fl, fd, flrm, fdrm, rev, ec, hMap, max, bits, bits16, shft, slc, err, inflt, inflateSync, pbf, gu8]; };
var bDflt = function () { return [u8, u16, u32, fleb, fdeb, clim, revfl, revfd, flm, flt, fdm, fdt, rev, deo, et, hMap, wbits, wbits16, hTree, ln, lc, clen, wfblk, wblk, shft, slc, dflt, dopt, deflateSync, pbf]; };
// gzip extra
var gze = function () { return [gzh, gzhl, wbytes, crc, crct]; };
// gunzip extra
var guze = function () { return [gzs, gzl]; };
// zlib extra
var zle = function () { return [zlh, wbytes, adler]; };
// unzlib extra
var zule = function () { return [zlv]; };
// post buf
var pbf = function (msg) { return postMessage(msg, [msg.buffer]); };
// get u8
var gu8 = function (o) { return o && o.size && new u8(o.size); };
// async helper
var cbify = function (dat, opts, fns, init, id, cb) {
var w = wrkr(fns, init, id, function (err, dat) {
w.terminate();
cb(err, dat);
});
w.postMessage([dat, opts], opts.consume ? [dat.buffer] : []);
return function () { w.terminate(); };
};
// auto stream
var astrm = function (strm) {
strm.ondata = function (dat, final) { return postMessage([dat, final], [dat.buffer]); };
return function (ev) { return strm.push(ev.data[0], ev.data[1]); };
};
// async stream attach
var astrmify = function (fns, strm, opts, init, id) {
var t;
var w = wrkr(fns, init, id, function (err, dat) {
if (err)
w.terminate(), strm.ondata.call(strm, err);
else {
if (dat[1])
w.terminate();
strm.ondata.call(strm, err, dat[0], dat[1]);
}
});
w.postMessage(opts);
strm.push = function (d, f) {
if (!strm.ondata)
err(5);
if (t)
strm.ondata(err(4, 0, 1), null, !!f);
w.postMessage([d, t = f], [d.buffer]);
};
strm.terminate = function () { w.terminate(); };
};
// read 2 bytes
var b2 = function (d, b) { return d[b] | (d[b + 1] << 8); };
// read 4 bytes
var b4 = function (d, b) { return (d[b] | (d[b + 1] << 8) | (d[b + 2] << 16) | (d[b + 3] << 24)) >>> 0; };
var b8 = function (d, b) { return b4(d, b) + (b4(d, b + 4) * 4294967296); };
// write bytes
var wbytes = function (d, b, v) {
for (; v; ++b)
d[b] = v, v >>>= 8;
};
// gzip header
var gzh = function (c, o) {
var fn = o.filename;
c[0] = 31, c[1] = 139, c[2] = 8, c[8] = o.level < 2 ? 4 : o.level == 9 ? 2 : 0, c[9] = 3; // assume Unix
if (o.mtime != 0)
wbytes(c, 4, Math.floor(new Date(o.mtime || Date.now()) / 1000));
if (fn) {
c[3] = 8;
for (var i = 0; i <= fn.length; ++i)
c[i + 10] = fn.charCodeAt(i);
}
};
// gzip footer: -8 to -4 = CRC, -4 to -0 is length
// gzip start
var gzs = function (d) {
if (d[0] != 31 || d[1] != 139 || d[2] != 8)
err(6, 'invalid gzip data');
var flg = d[3];
var st = 10;
if (flg & 4)
st += d[10] | (d[11] << 8) + 2;
for (var zs = (flg >> 3 & 1) + (flg >> 4 & 1); zs > 0; zs -= !d[st++])
;
return st + (flg & 2);
};
// gzip length
var gzl = function (d) {
var l = d.length;
return ((d[l - 4] | d[l - 3] << 8 | d[l - 2] << 16) | (d[l - 1] << 24)) >>> 0;
};
// gzip header length
var gzhl = function (o) { return 10 + ((o.filename && (o.filename.length + 1)) || 0); };
// zlib header
var zlh = function (c, o) {
var lv = o.level, fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2;
c[0] = 120, c[1] = (fl << 6) | (fl ? (32 - 2 * fl) : 1);
};
// zlib valid
var zlv = function (d) {
if ((d[0] & 15) != 8 || (d[0] >>> 4) > 7 || ((d[0] << 8 | d[1]) % 31))
err(6, 'invalid zlib data');
if (d[1] & 32)
err(6, 'invalid zlib data: preset dictionaries not supported');
};
function AsyncCmpStrm(opts, cb) {
if (!cb && typeof opts == 'function')
cb = opts, opts = {};
this.ondata = cb;
return opts;
}
// zlib footer: -4 to -0 is Adler32
/**
* Streaming DEFLATE compression
*/
var Deflate = /*#__PURE__*/ (function () {
function Deflate(opts, cb) {
if (!cb && typeof opts == 'function')
cb = opts, opts = {};
this.ondata = cb;
this.o = opts || {};
}
Deflate.prototype.p = function (c, f) {
this.ondata(dopt(c, this.o, 0, 0, !f), f);
};
/**
* Pushes a chunk to be deflated
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
Deflate.prototype.push = function (chunk, final) {
if (!this.ondata)
err(5);
if (this.d)
err(4);
this.d = final;
this.p(chunk, final || false);
};
return Deflate;
}());
export { Deflate };
/**
* Asynchronous streaming DEFLATE compression
*/
var AsyncDeflate = /*#__PURE__*/ (function () {
function AsyncDeflate(opts, cb) {
astrmify([
bDflt,
function () { return [astrm, Deflate]; }
], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
var strm = new Deflate(ev.data);
onmessage = astrm(strm);
}, 6);
}
return AsyncDeflate;
}());
export { AsyncDeflate };
export function deflate(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
return cbify(data, opts, [
bDflt,
], function (ev) { return pbf(deflateSync(ev.data[0], ev.data[1])); }, 0, cb);
}
/**
* Compresses data with DEFLATE without any wrapper
* @param data The data to compress
* @param opts The compression options
* @returns The deflated version of the data
*/
export function deflateSync(data, opts) {
return dopt(data, opts || {}, 0, 0);
}
/**
* Streaming DEFLATE decompression
*/
var Inflate = /*#__PURE__*/ (function () {
/**
* Creates an inflation stream
* @param cb The callback to call whenever data is inflated
*/
function Inflate(cb) {
this.s = {};
this.p = new u8(0);
this.ondata = cb;
}
Inflate.prototype.e = function (c) {
if (!this.ondata)
err(5);
if (this.d)
err(4);
var l = this.p.length;
var n = new u8(l + c.length);
n.set(this.p), n.set(c, l), this.p = n;
};
Inflate.prototype.c = function (final) {
this.d = this.s.i = final || false;
var bts = this.s.b;
var dt = inflt(this.p, this.o, this.s);
this.ondata(slc(dt, bts, this.s.b), this.d);
this.o = slc(dt, this.s.b - 32768), this.s.b = this.o.length;
this.p = slc(this.p, (this.s.p / 8) | 0), this.s.p &= 7;
};
/**
* Pushes a chunk to be inflated
* @param chunk The chunk to push
* @param final Whether this is the final chunk
*/
Inflate.prototype.push = function (chunk, final) {
this.e(chunk), this.c(final);
};
return Inflate;
}());
export { Inflate };
/**
* Asynchronous streaming DEFLATE decompression
*/
var AsyncInflate = /*#__PURE__*/ (function () {
/**
* Creates an asynchronous inflation stream
* @param cb The callback to call whenever data is deflated
*/
function AsyncInflate(cb) {
this.ondata = cb;
astrmify([
bInflt,
function () { return [astrm, Inflate]; }
], this, 0, function () {
var strm = new Inflate();
onmessage = astrm(strm);
}, 7);
}
return AsyncInflate;
}());
export { AsyncInflate };
export function inflate(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
return cbify(data, opts, [
bInflt
], function (ev) { return pbf(inflateSync(ev.data[0], gu8(ev.data[1]))); }, 1, cb);
}
/**
* Expands DEFLATE data with no wrapper
* @param data The data to decompress
* @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
* @returns The decompressed version of the data
*/
export function inflateSync(data, out) {
return inflt(data, out);
}
// before you yell at me for not just using extends, my reason is that TS inheritance is hard to workerize.
/**
* Streaming GZIP compression
*/
var Gzip = /*#__PURE__*/ (function () {
function Gzip(opts, cb) {
this.c = crc();
this.l = 0;
this.v = 1;
Deflate.call(this, opts, cb);
}
/**
* Pushes a chunk to be GZIPped
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
Gzip.prototype.push = function (chunk, final) {
Deflate.prototype.push.call(this, chunk, final);
};
Gzip.prototype.p = function (c, f) {
this.c.p(c);
this.l += c.length;
var raw = dopt(c, this.o, this.v && gzhl(this.o), f && 8, !f);
if (this.v)
gzh(raw, this.o), this.v = 0;
if (f)
wbytes(raw, raw.length - 8, this.c.d()), wbytes(raw, raw.length - 4, this.l);
this.ondata(raw, f);
};
return Gzip;
}());
export { Gzip };
/**
* Asynchronous streaming GZIP compression
*/
var AsyncGzip = /*#__PURE__*/ (function () {
function AsyncGzip(opts, cb) {
astrmify([
bDflt,
gze,
function () { return [astrm, Deflate, Gzip]; }
], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
var strm = new Gzip(ev.data);
onmessage = astrm(strm);
}, 8);
}
return AsyncGzip;
}());
export { AsyncGzip };
export function gzip(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
return cbify(data, opts, [
bDflt,
gze,
function () { return [gzipSync]; }
], function (ev) { return pbf(gzipSync(ev.data[0], ev.data[1])); }, 2, cb);
}
/**
* Compresses data with GZIP
* @param data The data to compress
* @param opts The compression options
* @returns The gzipped version of the data
*/
export function gzipSync(data, opts) {
if (!opts)
opts = {};
var c = crc(), l = data.length;
c.p(data);
var d = dopt(data, opts, gzhl(opts), 8), s = d.length;
return gzh(d, opts), wbytes(d, s - 8, c.d()), wbytes(d, s - 4, l), d;
}
/**
* Streaming GZIP decompression
*/
var Gunzip = /*#__PURE__*/ (function () {
/**
* Creates a GUNZIP stream
* @param cb The callback to call whenever data is inflated
*/
function Gunzip(cb) {
this.v = 1;
Inflate.call(this, cb);
}
/**
* Pushes a chunk to be GUNZIPped
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
Gunzip.prototype.push = function (chunk, final) {
Inflate.prototype.e.call(this, chunk);
if (this.v) {
var s = this.p.length > 3 ? gzs(this.p) : 4;
if (s >= this.p.length && !final)
return;
this.p = this.p.subarray(s), this.v = 0;
}
if (final) {
if (this.p.length < 8)
err(6, 'invalid gzip data');
this.p = this.p.subarray(0, -8);
}
// necessary to prevent TS from using the closure value
// This allows for workerization to function correctly
Inflate.prototype.c.call(this, final);
};
return Gunzip;
}());
export { Gunzip };
/**
* Asynchronous streaming GZIP decompression
*/
var AsyncGunzip = /*#__PURE__*/ (function () {
/**
* Creates an asynchronous GUNZIP stream
* @param cb The callback to call whenever data is deflated
*/
function AsyncGunzip(cb) {
this.ondata = cb;
astrmify([
bInflt,
guze,
function () { return [astrm, Inflate, Gunzip]; }
], this, 0, function () {
var strm = new Gunzip();
onmessage = astrm(strm);
}, 9);
}
return AsyncGunzip;
}());
export { AsyncGunzip };
export function gunzip(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
return cbify(data, opts, [
bInflt,
guze,
function () { return [gunzipSync]; }
], function (ev) { return pbf(gunzipSync(ev.data[0])); }, 3, cb);
}
/**
* Expands GZIP data
* @param data The data to decompress
* @param out Where to write the data. GZIP already encodes the output size, so providing this doesn't save memory.
* @returns The decompressed version of the data
*/
export function gunzipSync(data, out) {
return inflt(data.subarray(gzs(data), -8), out || new u8(gzl(data)));
}
/**
* Streaming Zlib compression
*/
var Zlib = /*#__PURE__*/ (function () {
function Zlib(opts, cb) {
this.c = adler();
this.v = 1;
Deflate.call(this, opts, cb);
}
/**
* Pushes a chunk to be zlibbed
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
Zlib.prototype.push = function (chunk, final) {
Deflate.prototype.push.call(this, chunk, final);
};
Zlib.prototype.p = function (c, f) {
this.c.p(c);
var raw = dopt(c, this.o, this.v && 2, f && 4, !f);
if (this.v)
zlh(raw, this.o), this.v = 0;
if (f)
wbytes(raw, raw.length - 4, this.c.d());
this.ondata(raw, f);
};
return Zlib;
}());
export { Zlib };
/**
* Asynchronous streaming Zlib compression
*/
var AsyncZlib = /*#__PURE__*/ (function () {
function AsyncZlib(opts, cb) {
astrmify([
bDflt,
zle,
function () { return [astrm, Deflate, Zlib]; }
], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
var strm = new Zlib(ev.data);
onmessage = astrm(strm);
}, 10);
}
return AsyncZlib;
}());
export { AsyncZlib };
export function zlib(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
return cbify(data, opts, [
bDflt,
zle,
function () { return [zlibSync]; }
], function (ev) { return pbf(zlibSync(ev.data[0], ev.data[1])); }, 4, cb);
}
/**
* Compress data with Zlib
* @param data The data to compress
* @param opts The compression options
* @returns The zlib-compressed version of the data
*/
export function zlibSync(data, opts) {
if (!opts)
opts = {};
var a = adler();
a.p(data);
var d = dopt(data, opts, 2, 4);
return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d;
}
/**
* Streaming Zlib decompression
*/
var Unzlib = /*#__PURE__*/ (function () {
/**
* Creates a Zlib decompression stream
* @param cb The callback to call whenever data is inflated
*/
function Unzlib(cb) {
this.v = 1;
Inflate.call(this, cb);
}
/**
* Pushes a chunk to be unzlibbed
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
Unzlib.prototype.push = function (chunk, final) {
Inflate.prototype.e.call(this, chunk);
if (this.v) {
if (this.p.length < 2 && !final)
return;
this.p = this.p.subarray(2), this.v = 0;
}
if (final) {
if (this.p.length < 4)
err(6, 'invalid zlib data');
this.p = this.p.subarray(0, -4);
}
// necessary to prevent TS from using the closure value
// This allows for workerization to function correctly
Inflate.prototype.c.call(this, final);
};
return Unzlib;
}());
export { Unzlib };
/**
* Asynchronous streaming Zlib decompression
*/
var AsyncUnzlib = /*#__PURE__*/ (function () {
/**
* Creates an asynchronous Zlib decompression stream
* @param cb The callback to call whenever data is deflated
*/
function AsyncUnzlib(cb) {
this.ondata = cb;
astrmify([
bInflt,
zule,
function () { return [astrm, Inflate, Unzlib]; }
], this, 0, function () {
var strm = new Unzlib();
onmessage = astrm(strm);
}, 11);
}
return AsyncUnzlib;
}());
export { AsyncUnzlib };
export function unzlib(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
return cbify(data, opts, [
bInflt,
zule,
function () { return [unzlibSync]; }
], function (ev) { return pbf(unzlibSync(ev.data[0], gu8(ev.data[1]))); }, 5, cb);
}
/**
* Expands Zlib data
* @param data The data to decompress
* @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
* @returns The decompressed version of the data
*/
export function unzlibSync(data, out) {
return inflt((zlv(data), data.subarray(2, -4)), out);
}
// Default algorithm for compression (used because having a known output size allows faster decompression)
export { gzip as compress, AsyncGzip as AsyncCompress };
// Default algorithm for compression (used because having a known output size allows faster decompression)
export { gzipSync as compressSync, Gzip as Compress };
/**
* Streaming GZIP, Zlib, or raw DEFLATE decompression
*/
var Decompress = /*#__PURE__*/ (function () {
/**
* Creates a decompression stream
* @param cb The callback to call whenever data is decompressed
*/
function Decompress(cb) {
this.G = Gunzip;
this.I = Inflate;
this.Z = Unzlib;
this.ondata = cb;
}
/**
* Pushes a chunk to be decompressed
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
Decompress.prototype.push = function (chunk, final) {
if (!this.ondata)
err(5);
if (!this.s) {
if (this.p && this.p.length) {
var n = new u8(this.p.length + chunk.length);
n.set(this.p), n.set(chunk, this.p.length);
}
else
this.p = chunk;
if (this.p.length > 2) {
var _this_1 = this;
var cb = function () { _this_1.ondata.apply(_this_1, arguments); };
this.s = (this.p[0] == 31 && this.p[1] == 139 && this.p[2] == 8)
? new this.G(cb)
: ((this.p[0] & 15) != 8 || (this.p[0] >> 4) > 7 || ((this.p[0] << 8 | this.p[1]) % 31))
? new this.I(cb)
: new this.Z(cb);
this.s.push(this.p, final);
this.p = null;
}
}
else
this.s.push(chunk, final);
};
return Decompress;
}());
export { Decompress };
/**
* Asynchronous streaming GZIP, Zlib, or raw DEFLATE decompression
*/
var AsyncDecompress = /*#__PURE__*/ (function () {
/**
* Creates an asynchronous decompression stream
* @param cb The callback to call whenever data is decompressed
*/
function AsyncDecompress(cb) {
this.G = AsyncGunzip;
this.I = AsyncInflate;
this.Z = AsyncUnzlib;
this.ondata = cb;
}
/**
* Pushes a chunk to be decompressed
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
AsyncDecompress.prototype.push = function (chunk, final) {
Decompress.prototype.push.call(this, chunk, final);
};
return AsyncDecompress;
}());
export { AsyncDecompress };
export function decompress(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
return (data[0] == 31 && data[1] == 139 && data[2] == 8)
? gunzip(data, opts, cb)
: ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31))
? inflate(data, opts, cb)
: unzlib(data, opts, cb);
}
/**
* Expands compressed GZIP, Zlib, or raw DEFLATE data, automatically detecting the format
* @param data The data to decompress
* @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
* @returns The decompressed version of the data
*/
export function decompressSync(data, out) {
return (data[0] == 31 && data[1] == 139 && data[2] == 8)
? gunzipSync(data, out)
: ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31))
? inflateSync(data, out)
: unzlibSync(data, out);
}
// flatten a directory structure
var fltn = function (d, p, t, o) {
for (var k in d) {
var val = d[k], n = p + k, op = o;
if (Array.isArray(val))
op = mrg(o, val[1]), val = val[0];
if (val instanceof u8)
t[n] = [val, op];
else {
t[n += '/'] = [new u8(0), op];
fltn(val, n, t, o);
}
}
};
// text encoder
var te = typeof TextEncoder != 'undefined' && /*#__PURE__*/ new TextEncoder();
// text decoder
var td = typeof TextDecoder != 'undefined' && /*#__PURE__*/ new TextDecoder();
// text decoder stream
var tds = 0;
try {
td.decode(et, { stream: true });
tds = 1;
}
catch (e) { }
// decode UTF8
var dutf8 = function (d) {
for (var r = '', i = 0;;) {
var c = d[i++];
var eb = (c > 127) + (c > 223) + (c > 239);
if (i + eb > d.length)
return [r, slc(d, i - 1)];
if (!eb)
r += String.fromCharCode(c);
else if (eb == 3) {
c = ((c & 15) << 18 | (d[i++] & 63) << 12 | (d[i++] & 63) << 6 | (d[i++] & 63)) - 65536,
r += String.fromCharCode(55296 | (c >> 10), 56320 | (c & 1023));
}
else if (eb & 1)
r += String.fromCharCode((c & 31) << 6 | (d[i++] & 63));
else
r += String.fromCharCode((c & 15) << 12 | (d[i++] & 63) << 6 | (d[i++] & 63));
}
};
/**
* Streaming UTF-8 decoding
*/
var DecodeUTF8 = /*#__PURE__*/ (function () {
/**
* Creates a UTF-8 decoding stream
* @param cb The callback to call whenever data is decoded
*/
function DecodeUTF8(cb) {
this.ondata = cb;
if (tds)
this.t = new TextDecoder();
else
this.p = et;
}
/**
* Pushes a chunk to be decoded from UTF-8 binary
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
DecodeUTF8.prototype.push = function (chunk, final) {
if (!this.ondata)
err(5);
final = !!final;
if (this.t) {
this.ondata(this.t.decode(chunk, { stream: true }), final);
if (final) {
if (this.t.decode().length)
err(8);
this.t = null;
}
return;
}
if (!this.p)
err(4);
var dat = new u8(this.p.length + chunk.length);
dat.set(this.p);
dat.set(chunk, this.p.length);
var _a = dutf8(dat), ch = _a[0], np = _a[1];
if (final) {
if (np.length)
err(8);
this.p = null;
}
else
this.p = np;
this.ondata(ch, final);
};
return DecodeUTF8;
}());
export { DecodeUTF8 };
/**
* Streaming UTF-8 encoding
*/
var EncodeUTF8 = /*#__PURE__*/ (function () {
/**
* Creates a UTF-8 decoding stream
* @param cb The callback to call whenever data is encoded
*/
function EncodeUTF8(cb) {
this.ondata = cb;
}
/**
* Pushes a chunk to be encoded to UTF-8
* @param chunk The string data to push
* @param final Whether this is the last chunk
*/
EncodeUTF8.prototype.push = function (chunk, final) {
if (!this.ondata)
err(5);
if (this.d)
err(4);
this.ondata(strToU8(chunk), this.d = final || false);
};
return EncodeUTF8;
}());
export { EncodeUTF8 };
/**
* Converts a string into a Uint8Array for use with compression/decompression methods
* @param str The string to encode
* @param latin1 Whether or not to interpret the data as Latin-1. This should
* not need to be true unless decoding a binary string.
* @returns The string encoded in UTF-8/Latin-1 binary
*/
export function strToU8(str, latin1) {
if (latin1) {
var ar_1 = new u8(str.length);
for (var i = 0; i < str.length; ++i)
ar_1[i] = str.charCodeAt(i);
return ar_1;
}
if (te)
return te.encode(str);
var l = str.length;
var ar = new u8(str.length + (str.length >> 1));
var ai = 0;
var w = function (v) { ar[ai++] = v; };
for (var i = 0; i < l; ++i) {
if (ai + 5 > ar.length) {
var n = new u8(ai + 8 + ((l - i) << 1));
n.set(ar);
ar = n;
}
var c = str.charCodeAt(i);
if (c < 128 || latin1)
w(c);
else if (c < 2048)
w(192 | (c >> 6)), w(128 | (c & 63));
else if (c > 55295 && c < 57344)
c = 65536 + (c & 1023 << 10) | (str.charCodeAt(++i) & 1023),
w(240 | (c >> 18)), w(128 | ((c >> 12) & 63)), w(128 | ((c >> 6) & 63)), w(128 | (c & 63));
else
w(224 | (c >> 12)), w(128 | ((c >> 6) & 63)), w(128 | (c & 63));
}
return slc(ar, 0, ai);
}
/**
* Converts a Uint8Array to a string
* @param dat The data to decode to string
* @param latin1 Whether or not to interpret the data as Latin-1. This should
* not need to be true unless encoding to binary string.
* @returns The original UTF-8/Latin-1 string
*/
export function strFromU8(dat, latin1) {
if (latin1) {
var r = '';
for (var i = 0; i < dat.length; i += 16384)
r += String.fromCharCode.apply(null, dat.subarray(i, i + 16384));
return r;
}
else if (td)
return td.decode(dat);
else {
var _a = dutf8(dat), out = _a[0], ext = _a[1];
if (ext.length)
err(8);
return out;
}
}
;
// deflate bit flag
var dbf = function (l) { return l == 1 ? 3 : l < 6 ? 2 : l == 9 ? 1 : 0; };
// skip local zip header
var slzh = function (d, b) { return b + 30 + b2(d, b + 26) + b2(d, b + 28); };
// read zip header
var zh = function (d, b, z) {
var fnl = b2(d, b + 28), fn = strFromU8(d.subarray(b + 46, b + 46 + fnl), !(b2(d, b + 8) & 2048)), es = b + 46 + fnl, bs = b4(d, b + 20);
var _a = z && bs == 4294967295 ? z64e(d, es) : [bs, b4(d, b + 24), b4(d, b + 42)], sc = _a[0], su = _a[1], off = _a[2];
return [b2(d, b + 10), sc, su, fn, es + b2(d, b + 30) + b2(d, b + 32), off];
};
// read zip64 extra field
var z64e = function (d, b) {
for (; b2(d, b) != 1; b += 4 + b2(d, b + 2))
;
return [b8(d, b + 12), b8(d, b + 4), b8(d, b + 20)];
};
// extra field length
var exfl = function (ex) {
var le = 0;
if (ex) {
for (var k in ex) {
var l = ex[k].length;
if (l > 65535)
err(9);
le += l + 4;
}
}
return le;
};
// write zip header
var wzh = function (d, b, f, fn, u, c, ce, co) {
var fl = fn.length, ex = f.extra, col = co && co.length;
var exl = exfl(ex);
wbytes(d, b, ce != null ? 0x2014B50 : 0x4034B50), b += 4;
if (ce != null)
d[b++] = 20, d[b++] = f.os;
d[b] = 20, b += 2; // spec compliance? what's that?
d[b++] = (f.flag << 1) | (c < 0 && 8), d[b++] = u && 8;
d[b++] = f.compression & 255, d[b++] = f.compression >> 8;
var dt = new Date(f.mtime == null ? Date.now() : f.mtime), y = dt.getFullYear() - 1980;
if (y < 0 || y > 119)
err(10);
wbytes(d, b, (y << 25) | ((dt.getMonth() + 1) << 21) | (dt.getDate() << 16) | (dt.getHours() << 11) | (dt.getMinutes() << 5) | (dt.getSeconds() >>> 1)), b += 4;
if (c != -1) {
wbytes(d, b, f.crc);
wbytes(d, b + 4, c < 0 ? -c - 2 : c);
wbytes(d, b + 8, f.size);
}
wbytes(d, b + 12, fl);
wbytes(d, b + 14, exl), b += 16;
if (ce != null) {
wbytes(d, b, col);
wbytes(d, b + 6, f.attrs);
wbytes(d, b + 10, ce), b += 14;
}
d.set(fn, b);
b += fl;
if (exl) {
for (var k in ex) {
var exf = ex[k], l = exf.length;
wbytes(d, b, +k);
wbytes(d, b + 2, l);
d.set(exf, b + 4), b += 4 + l;
}
}
if (col)
d.set(co, b), b += col;
return b;
};
// write zip footer (end of central directory)
var wzf = function (o, b, c, d, e) {
wbytes(o, b, 0x6054B50); // skip disk
wbytes(o, b + 8, c);
wbytes(o, b + 10, c);
wbytes(o, b + 12, d);
wbytes(o, b + 16, e);
};
/**
* A pass-through stream to keep data uncompressed in a ZIP archive.
*/
var ZipPassThrough = /*#__PURE__*/ (function () {
/**
* Creates a pass-through stream that can be added to ZIP archives
* @param filename The filename to associate with this data stream
*/
function ZipPassThrough(filename) {
this.filename = filename;
this.c = crc();
this.size = 0;
this.compression = 0;
}
/**
* Processes a chunk and pushes to the output stream. You can override this
* method in a subclass for custom behavior, but by default this passes
* the data through. You must call this.ondata(err, chunk, final) at some
* point in this method.
* @param chunk The chunk to process
* @param final Whether this is the last chunk
*/
ZipPassThrough.prototype.process = function (chunk, final) {
this.ondata(null, chunk, final);
};
/**
* Pushes a chunk to be added. If you are subclassing this with a custom
* compression algorithm, note that you must push data from the source
* file only, pre-compression.
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
ZipPassThrough.prototype.push = function (chunk, final) {
if (!this.ondata)
err(5);
this.c.p(chunk);
this.size += chunk.length;
if (final)
this.crc = this.c.d();
this.process(chunk, final || false);
};
return ZipPassThrough;
}());
export { ZipPassThrough };
// I don't extend because TypeScript extension adds 1kB of runtime bloat
/**
* Streaming DEFLATE compression for ZIP archives. Prefer using AsyncZipDeflate
* for better performance
*/
var ZipDeflate = /*#__PURE__*/ (function () {
/**
* Creates a DEFLATE stream that can be added to ZIP archives
* @param filename The filename to associate with this data stream
* @param opts The compression options
*/
function ZipDeflate(filename, opts) {
var _this_1 = this;
if (!opts)
opts = {};
ZipPassThrough.call(this, filename);
this.d = new Deflate(opts, function (dat, final) {
_this_1.ondata(null, dat, final);
});
this.compression = 8;
this.flag = dbf(opts.level);
}
ZipDeflate.prototype.process = function (chunk, final) {
try {
this.d.push(chunk, final);
}
catch (e) {
this.ondata(e, null, final);
}
};
/**
* Pushes a chunk to be deflated
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
ZipDeflate.prototype.push = function (chunk, final) {
ZipPassThrough.prototype.push.call(this, chunk, final);
};
return ZipDeflate;
}());
export { ZipDeflate };
/**
* Asynchronous streaming DEFLATE compression for ZIP archives
*/
var AsyncZipDeflate = /*#__PURE__*/ (function () {
/**
* Creates a DEFLATE stream that can be added to ZIP archives
* @param filename The filename to associate with this data stream
* @param opts The compression options
*/
function AsyncZipDeflate(filename, opts) {
var _this_1 = this;
if (!opts)
opts = {};
ZipPassThrough.call(this, filename);
this.d = new AsyncDeflate(opts, function (err, dat, final) {
_this_1.ondata(err, dat, final);
});
this.compression = 8;
this.flag = dbf(opts.level);
this.terminate = this.d.terminate;
}
AsyncZipDeflate.prototype.process = function (chunk, final) {
this.d.push(chunk, final);
};
/**
* Pushes a chunk to be deflated
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
AsyncZipDeflate.prototype.push = function (chunk, final) {
ZipPassThrough.prototype.push.call(this, chunk, final);
};
return AsyncZipDeflate;
}());
export { AsyncZipDeflate };
// TODO: Better tree shaking
/**
* A zippable archive to which files can incrementally be added
*/
var Zip = /*#__PURE__*/ (function () {
/**
* Creates an empty ZIP archive to which files can be added
* @param cb The callback to call whenever data for the generated ZIP archive
* is available
*/
function Zip(cb) {
this.ondata = cb;
this.u = [];
this.d = 1;
}
/**
* Adds a file to the ZIP archive
* @param file The file stream to add
*/
Zip.prototype.add = function (file) {
var _this_1 = this;
if (!this.ondata)
err(5);
// finishing or finished
if (this.d & 2)
this.ondata(err(4 + (this.d & 1) * 8, 0, 1), null, false);
else {
var f = strToU8(file.filename), fl_1 = f.length;
var com = file.comment, o = com && strToU8(com);
var u = fl_1 != file.filename.length || (o && (com.length != o.length));
var hl_1 = fl_1 + exfl(file.extra) + 30;
if (fl_1 > 65535)
this.ondata(err(11, 0, 1), null, false);
var header = new u8(hl_1);
wzh(header, 0, file, f, u, -1);
var chks_1 = [header];
var pAll_1 = function () {
for (var _i = 0, chks_2 = chks_1; _i < chks_2.length; _i++) {
var chk = chks_2[_i];
_this_1.ondata(null, chk, false);
}
chks_1 = [];
};
var tr_1 = this.d;
this.d = 0;
var ind_1 = this.u.length;
var uf_1 = mrg(file, {
f: f,
u: u,
o: o,
t: function () {
if (file.terminate)
file.terminate();
},
r: function () {
pAll_1();
if (tr_1) {
var nxt = _this_1.u[ind_1 + 1];
if (nxt)
nxt.r();
else
_this_1.d = 1;
}
tr_1 = 1;
}
});
var cl_1 = 0;
file.ondata = function (err, dat, final) {
if (err) {
_this_1.ondata(err, dat, final);
_this_1.terminate();
}
else {
cl_1 += dat.length;
chks_1.push(dat);
if (final) {
var dd = new u8(16);
wbytes(dd, 0, 0x8074B50);
wbytes(dd, 4, file.crc);
wbytes(dd, 8, cl_1);
wbytes(dd, 12, file.size);
chks_1.push(dd);
uf_1.c = cl_1, uf_1.b = hl_1 + cl_1 + 16, uf_1.crc = file.crc, uf_1.size = file.size;
if (tr_1)
uf_1.r();
tr_1 = 1;
}
else if (tr_1)
pAll_1();
}
};
this.u.push(uf_1);
}
};
/**
* Ends the process of adding files and prepares to emit the final chunks.
* This *must* be called after adding all desired files for the resulting
* ZIP file to work properly.
*/
Zip.prototype.end = function () {
var _this_1 = this;
if (this.d & 2) {
this.ondata(err(4 + (this.d & 1) * 8, 0, 1), null, true);
return;
}
if (this.d)
this.e();
else
this.u.push({
r: function () {
if (!(_this_1.d & 1))
return;
_this_1.u.splice(-1, 1);
_this_1.e();
},
t: function () { }
});
this.d = 3;
};
Zip.prototype.e = function () {
var bt = 0, l = 0, tl = 0;
for (var _i = 0, _a = this.u; _i < _a.length; _i++) {
var f = _a[_i];
tl += 46 + f.f.length + exfl(f.extra) + (f.o ? f.o.length : 0);
}
var out = new u8(tl + 22);
for (var _b = 0, _c = this.u; _b < _c.length; _b++) {
var f = _c[_b];
wzh(out, bt, f, f.f, f.u, -f.c - 2, l, f.o);
bt += 46 + f.f.length + exfl(f.extra) + (f.o ? f.o.length : 0), l += f.b;
}
wzf(out, bt, this.u.length, tl, l);
this.ondata(null, out, true);
this.d = 2;
};
/**
* A method to terminate any internal workers used by the stream. Subsequent
* calls to add() will fail.
*/
Zip.prototype.terminate = function () {
for (var _i = 0, _a = this.u; _i < _a.length; _i++) {
var f = _a[_i];
f.t();
}
this.d = 2;
};
return Zip;
}());
export { Zip };
export function zip(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
var r = {};
fltn(data, '', r, opts);
var k = Object.keys(r);
var lft = k.length, o = 0, tot = 0;
var slft = lft, files = new Array(lft);
var term = [];
var tAll = function () {
for (var i = 0; i < term.length; ++i)
term[i]();
};
var cbd = function (a, b) {
mt(function () { cb(a, b); });
};
mt(function () { cbd = cb; });
var cbf = function () {
var out = new u8(tot + 22), oe = o, cdl = tot - o;
tot = 0;
for (var i = 0; i < slft; ++i) {
var f = files[i];
try {
var l = f.c.length;
wzh(out, tot, f, f.f, f.u, l);
var badd = 30 + f.f.length + exfl(f.extra);
var loc = tot + badd;
out.set(f.c, loc);
wzh(out, o, f, f.f, f.u, l, tot, f.m), o += 16 + badd + (f.m ? f.m.length : 0), tot = loc + l;
}
catch (e) {
return cbd(e, null);
}
}
wzf(out, o, files.length, cdl, oe);
cbd(null, out);
};
if (!lft)
cbf();
var _loop_1 = function (i) {
var fn = k[i];
var _a = r[fn], file = _a[0], p = _a[1];
var c = crc(), size = file.length;
c.p(file);
var f = strToU8(fn), s = f.length;
var com = p.comment, m = com && strToU8(com), ms = m && m.length;
var exl = exfl(p.extra);
var compression = p.level == 0 ? 0 : 8;
var cbl = function (e, d) {
if (e) {
tAll();
cbd(e, null);
}
else {
var l = d.length;
files[i] = mrg(p, {
size: size,
crc: c.d(),
c: d,
f: f,
m: m,
u: s != fn.length || (m && (com.length != ms)),
compression: compression
});
o += 30 + s + exl + l;
tot += 76 + 2 * (s + exl) + (ms || 0) + l;
if (!--lft)
cbf();
}
};
if (s > 65535)
cbl(err(11, 0, 1), null);
if (!compression)
cbl(null, file);
else if (size < 160000) {
try {
cbl(null, deflateSync(file, p));
}
catch (e) {
cbl(e, null);
}
}
else
term.push(deflate(file, p, cbl));
};
// Cannot use lft because it can decrease
for (var i = 0; i < slft; ++i) {
_loop_1(i);
}
return tAll;
}
/**
* Synchronously creates a ZIP file. Prefer using `zip` for better performance
* with more than one file.
* @param data The directory structure for the ZIP archive
* @param opts The main options, merged with per-file options
* @returns The generated ZIP archive
*/
export function zipSync(data, opts) {
if (!opts)
opts = {};
var r = {};
var files = [];
fltn(data, '', r, opts);
var o = 0;
var tot = 0;
for (var fn in r) {
var _a = r[fn], file = _a[0], p = _a[1];
var compression = p.level == 0 ? 0 : 8;
var f = strToU8(fn), s = f.length;
var com = p.comment, m = com && strToU8(com), ms = m && m.length;
var exl = exfl(p.extra);
if (s > 65535)
err(11);
var d = compression ? deflateSync(file, p) : file, l = d.length;
var c = crc();
c.p(file);
files.push(mrg(p, {
size: file.length,
crc: c.d(),
c: d,
f: f,
m: m,
u: s != fn.length || (m && (com.length != ms)),
o: o,
compression: compression
}));
o += 30 + s + exl + l;
tot += 76 + 2 * (s + exl) + (ms || 0) + l;
}
var out = new u8(tot + 22), oe = o, cdl = tot - o;
for (var i = 0; i < files.length; ++i) {
var f = files[i];
wzh(out, f.o, f, f.f, f.u, f.c.length);
var badd = 30 + f.f.length + exfl(f.extra);
out.set(f.c, f.o + badd);
wzh(out, o, f, f.f, f.u, f.c.length, f.o, f.m), o += 16 + badd + (f.m ? f.m.length : 0);
}
wzf(out, o, files.length, cdl, oe);
return out;
}
/**
* Streaming pass-through decompression for ZIP archives
*/
var UnzipPassThrough = /*#__PURE__*/ (function () {
function UnzipPassThrough() {
}
UnzipPassThrough.prototype.push = function (data, final) {
this.ondata(null, data, final);
};
UnzipPassThrough.compression = 0;
return UnzipPassThrough;
}());
export { UnzipPassThrough };
/**
* Streaming DEFLATE decompression for ZIP archives. Prefer AsyncZipInflate for
* better performance.
*/
var UnzipInflate = /*#__PURE__*/ (function () {
/**
* Creates a DEFLATE decompression that can be used in ZIP archives
*/
function UnzipInflate() {
var _this_1 = this;
this.i = new Inflate(function (dat, final) {
_this_1.ondata(null, dat, final);
});
}
UnzipInflate.prototype.push = function (data, final) {
try {
this.i.push(data, final);
}
catch (e) {
this.ondata(e, null, final);
}
};
UnzipInflate.compression = 8;
return UnzipInflate;
}());
export { UnzipInflate };
/**
* Asynchronous streaming DEFLATE decompression for ZIP archives
*/
var AsyncUnzipInflate = /*#__PURE__*/ (function () {
/**
* Creates a DEFLATE decompression that can be used in ZIP archives
*/
function AsyncUnzipInflate(_, sz) {
var _this_1 = this;
if (sz < 320000) {
this.i = new Inflate(function (dat, final) {
_this_1.ondata(null, dat, final);
});
}
else {
this.i = new AsyncInflate(function (err, dat, final) {
_this_1.ondata(err, dat, final);
});
this.terminate = this.i.terminate;
}
}
AsyncUnzipInflate.prototype.push = function (data, final) {
if (this.i.terminate)
data = slc(data, 0);
this.i.push(data, final);
};
AsyncUnzipInflate.compression = 8;
return AsyncUnzipInflate;
}());
export { AsyncUnzipInflate };
/**
* A ZIP archive decompression stream that emits files as they are discovered
*/
var Unzip = /*#__PURE__*/ (function () {
/**
* Creates a ZIP decompression stream
* @param cb The callback to call whenever a file in the ZIP archive is found
*/
function Unzip(cb) {
this.onfile = cb;
this.k = [];
this.o = {
0: UnzipPassThrough
};
this.p = et;
}
/**
* Pushes a chunk to be unzipped
* @param chunk The chunk to push
* @param final Whether this is the last chunk
*/
Unzip.prototype.push = function (chunk, final) {
var _this_1 = this;
if (!this.onfile)
err(5);
if (!this.p)
err(4);
if (this.c > 0) {
var len = Math.min(this.c, chunk.length);
var toAdd = chunk.subarray(0, len);
this.c -= len;
if (this.d)
this.d.push(toAdd, !this.c);
else
this.k[0].push(toAdd);
chunk = chunk.subarray(len);
if (chunk.length)
return this.push(chunk, final);
}
else {
var f = 0, i = 0, is = void 0, buf = void 0;
if (!this.p.length)
buf = chunk;
else if (!chunk.length)
buf = this.p;
else {
buf = new u8(this.p.length + chunk.length);
buf.set(this.p), buf.set(chunk, this.p.length);
}
var l = buf.length, oc = this.c, add = oc && this.d;
var _loop_2 = function () {
var _a;
var sig = b4(buf, i);
if (sig == 0x4034B50) {
f = 1, is = i;
this_1.d = null;
this_1.c = 0;
var bf = b2(buf, i + 6), cmp_1 = b2(buf, i + 8), u = bf & 2048, dd = bf & 8, fnl = b2(buf, i + 26), es = b2(buf, i + 28);
if (l > i + 30 + fnl + es) {
var chks_3 = [];
this_1.k.unshift(chks_3);
f = 2;
var sc_1 = b4(buf, i + 18), su_1 = b4(buf, i + 22);
var fn_1 = strFromU8(buf.subarray(i + 30, i += 30 + fnl), !u);
if (sc_1 == 4294967295) {
_a = dd ? [-2] : z64e(buf, i), sc_1 = _a[0], su_1 = _a[1];
}
else if (dd)
sc_1 = -1;
i += es;
this_1.c = sc_1;
var d_1;
var file_1 = {
name: fn_1,
compression: cmp_1,
start: function () {
if (!file_1.ondata)
err(5);
if (!sc_1)
file_1.ondata(null, et, true);
else {
var ctr = _this_1.o[cmp_1];
if (!ctr)
file_1.ondata(err(14, 'unknown compression type ' + cmp_1, 1), null, false);
d_1 = sc_1 < 0 ? new ctr(fn_1) : new ctr(fn_1, sc_1, su_1);
d_1.ondata = function (err, dat, final) { file_1.ondata(err, dat, final); };
for (var _i = 0, chks_4 = chks_3; _i < chks_4.length; _i++) {
var dat = chks_4[_i];
d_1.push(dat, false);
}
if (_this_1.k[0] == chks_3 && _this_1.c)
_this_1.d = d_1;
else
d_1.push(et, true);
}
},
terminate: function () {
if (d_1 && d_1.terminate)
d_1.terminate();
}
};
if (sc_1 >= 0)
file_1.size = sc_1, file_1.originalSize = su_1;
this_1.onfile(file_1);
}
return "break";
}
else if (oc) {
if (sig == 0x8074B50) {
is = i += 12 + (oc == -2 && 8), f = 3, this_1.c = 0;
return "break";
}
else if (sig == 0x2014B50) {
is = i -= 4, f = 3, this_1.c = 0;
return "break";
}
}
};
var this_1 = this;
for (; i < l - 4; ++i) {
var state_1 = _loop_2();
if (state_1 === "break")
break;
}
this.p = et;
if (oc < 0) {
var dat = f ? buf.subarray(0, is - 12 - (oc == -2 && 8) - (b4(buf, is - 16) == 0x8074B50 && 4)) : buf.subarray(0, i);
if (add)
add.push(dat, !!f);
else
this.k[+(f == 2)].push(dat);
}
if (f & 2)
return this.push(buf.subarray(i), final);
this.p = buf.subarray(i);
}
if (final) {
if (this.c)
err(13);
this.p = null;
}
};
/**
* Registers a decoder with the stream, allowing for files compressed with
* the compression type provided to be expanded correctly
* @param decoder The decoder constructor
*/
Unzip.prototype.register = function (decoder) {
this.o[decoder.compression] = decoder;
};
return Unzip;
}());
export { Unzip };
var mt = typeof queueMicrotask == 'function' ? queueMicrotask : typeof setTimeout == 'function' ? setTimeout : function (fn) { fn(); };
export function unzip(data, opts, cb) {
if (!cb)
cb = opts, opts = {};
if (typeof cb != 'function')
err(7);
var term = [];
var tAll = function () {
for (var i = 0; i < term.length; ++i)
term[i]();
};
var files = {};
var cbd = function (a, b) {
mt(function () { cb(a, b); });
};
mt(function () { cbd = cb; });
var e = data.length - 22;
for (; b4(data, e) != 0x6054B50; --e) {
if (!e || data.length - e > 65558) {
cbd(err(13, 0, 1), null);
return tAll;
}
}
;
var lft = b2(data, e + 8);
if (lft) {
var c = lft;
var o = b4(data, e + 16);
var z = o == 4294967295 || c == 65535;
if (z) {
var ze = b4(data, e - 12);
z = b4(data, ze) == 0x6064B50;
if (z) {
c = lft = b4(data, ze + 32);
o = b4(data, ze + 48);
}
}
var fltr = opts && opts.filter;
var _loop_3 = function (i) {
var _a = zh(data, o, z), c_1 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off);
o = no;
var cbl = function (e, d) {
if (e) {
tAll();
cbd(e, null);
}
else {
if (d)
files[fn] = d;
if (!--lft)
cbd(null, files);
}
};
if (!fltr || fltr({
name: fn,
size: sc,
originalSize: su,
compression: c_1
})) {
if (!c_1)
cbl(null, slc(data, b, b + sc));
else if (c_1 == 8) {
var infl = data.subarray(b, b + sc);
if (sc < 320000) {
try {
cbl(null, inflateSync(infl, new u8(su)));
}
catch (e) {
cbl(e, null);
}
}
else
term.push(inflate(infl, { size: su }, cbl));
}
else
cbl(err(14, 'unknown compression type ' + c_1, 1), null);
}
else
cbl(null, null);
};
for (var i = 0; i < c; ++i) {
_loop_3(i);
}
}
else
cbd(null, {});
return tAll;
}
/**
* Synchronously decompresses a ZIP archive. Prefer using `unzip` for better
* performance with more than one file.
* @param data The raw compressed ZIP file
* @param opts The ZIP extraction options
* @returns The decompressed files
*/
export function unzipSync(data, opts) {
var files = {};
var e = data.length - 22;
for (; b4(data, e) != 0x6054B50; --e) {
if (!e || data.length - e > 65558)
err(13);
}
;
var c = b2(data, e + 8);
if (!c)
return {};
var o = b4(data, e + 16);
var z = o == 4294967295 || c == 65535;
if (z) {
var ze = b4(data, e - 12);
z = b4(data, ze) == 0x6064B50;
if (z) {
c = b4(data, ze + 32);
o = b4(data, ze + 48);
}
}
var fltr = opts && opts.filter;
for (var i = 0; i < c; ++i) {
var _a = zh(data, o, z), c_2 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off);
o = no;
if (!fltr || fltr({
name: fn,
size: sc,
originalSize: su,
compression: c_2
})) {
if (!c_2)
files[fn] = slc(data, b, b + sc);
else if (c_2 == 8)
files[fn] = inflateSync(data.subarray(b, b + sc), new u8(su));
else
err(14, 'unknown compression type ' + c_2);
}
}
return files;
}