1 line
6.6 KiB
JSON
1 line
6.6 KiB
JSON
|
{"version":1,"baseVals":{"rating":0,"decay":1,"echo_zoom":0.9996,"echo_orient":3,"wave_mode":1,"wave_a":0.001,"warpscale":0.033004,"zoom":0.97,"rot":-6.279995,"warp":0.931,"wave_r":0,"wave_g":0,"wave_b":0,"ob_r":1,"ob_g":1,"ob_b":1,"mv_a":0},"shapes":[{"baseVals":{"enabled":1,"sides":100,"textured":1,"tex_capture":1,"tex_cx":0.5,"tex_cy":0.5,"rad":1.0003,"g":1,"b":1,"r2":1,"g2":0,"b2":1,"a2":1,"border_a":1},"init_eqs_eel":"","frame_eqs_eel":"r2 = 0.5 + 0.5*sin(q2*0.45);\ng2 = 0.5 + 0.5*sin(q2*0.578);\nb2 = 0.5 + 0.5*sin(q2*0.789);\n\n\nx = 0.5 + 0.2*sin(q2*1.2);\ny = 0.5 + 0.2*sin(q2*0.78);\n\nang = q2*0.899;\ntex_capture = above(q3,2);"},{"baseVals":{"enabled":1,"sides":100,"textured":1,"tex_capture":0,"tex_cx":0.5,"tex_cy":0.5,"rad":0.742182,"g":1,"b":1,"r2":1,"g2":0,"b2":1,"a2":1,"border_a":1},"init_eqs_eel":"","frame_eqs_eel":"r2 = 0.5 + 0.5*sin(q2*0.45);\ng2 = 0.5 + 0.5*sin(q2*0.678);\nb2 = 0.5 + 0.5*sin(q2*0.689);\n\n\nx = 0.5 + 0.2*sin(q2*0.899);\ny = 0.5 + 0.2*sin(q2*0.95);\n\n\n\nang = -q2*1.05;\ntex_capture = above(q3,2);"},{"baseVals":{"enabled":1,"sides":100,"textured":1,"tex_capture":0,"tex_cx":0.5,"tex_cy":0.5,"rad":0.498489,"g":1,"b":1,"r2":1,"g2":0,"b2":1,"a2":1,"border_a":1},"init_eqs_eel":"","frame_eqs_eel":"r2 = 0.5 + 0.5*sin(q2*0.35);\ng2 = 0.5 + 0.5*sin(q2*0.578);\nb2 = 0.5 + 0.5*sin(q2*0.689);\n\nx = 0.5 + 0.2*sin(q2);\ny = 0.5 + 0.2*sin(q2*0.89);\n\n\nang = q2;\ntex_capture = above(q3,2);"},{"baseVals":{"enabled":1,"textured":1,"tex_capture":1,"tex_cx":0.5,"tex_cy":0.5,"rad":3.254462,"g":1,"b":1,"a":0.3,"r2":1,"b2":1,"a2":0.4,"border_a":0},"init_eqs_eel":"","frame_eqs_eel":"\ntex_capture = above(q3,2);"}],"waves":[{"baseVals":{"enabled":1,"sep":1,"spectrum":1,"thick":1,"bdrawback":0,"additive":1},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":"u = (cos(q1*0.1))*3.14159;\nv = (cos(q1*0.015))*3.14159*2;\ns = sample*3.14*100;\nss = sample*6.28*1000;\n\n//draw\nxs = (0.3 + 0.1*cos(s))*cos(ss)*0.2*cos(v);\nys = (0.3 + 0.1*cos(s))*sin(ss)*6*u;\nzs = 0.5*sin(s)*0.2*sin(v);\n\n//rotate x axis\nangle = q1*0.1;\nyx = ys*cos(angle) - zs*sin(angle);\nzx = ys*sin(angle) + zs*cos(angle);\nxx = xs;\n\n//rotate y axis\nangle2 = q1*0.11;\nxd = xx*cos(angle2) - zx*sin(angle2);\nzd = xx*sin(angle2) + zx*cos(angle2);\nyd = yx;\n\n//rotaye z axis\nangle3 = q1*0.15;\nxn = xd*cos(angle3) - yd*sin(angle3);\nyn = xd*sin(angle3) + yd*cos(angle3);\n\nzd = zd;\n\nx = xn*zd*0.3 + 0.5;\ny = yn*zd*0.3*1.2 + 0.5;\n\nr = 0.5 + 0.5*sin(q1*1.2 + x + x);\ng = 0.5 + 0.5*sin(q1*1.5 + x + y);\nb = 0.5 + 0.5*sin(q1*1.36 + y + y);"},{"baseVals":{"enabled":1,"sep":1,"spectrum":1,"thick":1,"bdrawback":0,"additive":1},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":"u = (cos(q1*0.1))*3.14159;\nv = (cos(q1*0.015))*3.14159*2;\ns = sample*3.14*100;\nss = sample*6.28*1000;\n\n//draw\nxs = (0.3 + 0.1*cos(s))*cos(ss)*0.2*cos(v);\nys = (0.3 + 0.1*cos(s))*sin(ss)*6*u;\nzs = 0.5*sin(s)*0.2*sin(v);\n\n//rotate x axis\nangle = q1*0.1;\nyx = ys*cos(angle) - zs*sin(angle);\nzx = ys*sin(angle) + zs*cos(angle);\nxx = xs;\n\n//rotate y axis\nangle2 = q1*0.13;\nxd = xx*cos(angle2) - zx*sin(angle2);\nzd = xx*sin(angle2) + zx*cos(angle2);\nyd = yx;\n\n//rotaye z axis\nangle3 = q1*0.16;\nxn = xd*cos(angle3) - yd*sin(angle3);\nyn = xd*sin(angle3) + yd*cos(angle3);\n\nzd = zd;\n\nx = xn*zd*0.3 + 0.5;\ny = yn*zd*0.3*1.2 + 0.5;\n\nr = 0.5 + 0.5*sin(q1*1.2 + x + x);\ng = 0.5 + 0.5*sin(q1*1.5 + x + y);\nb = 0.5 + 0.5*sin(q1*1.36 + y + y);"},{"baseVals":{"enabled":1,"sep":1,"spectrum":1,"thick":1,"bdrawback":0,"additive":1},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":"u = (cos(q1*0.1))*3.14159;\nv = (cos(q1*0.015))*3.14159*2;\ns = sample*3.14*100;\nss = sample*6.28*1000;\n\n//draw\nxs = (0.3 + 0.1*cos(s))*cos(ss)*0.2*cos(v);\nys = (0.3 + 0.1*cos(s))*sin(ss)*6*u;\nzs = 0.5*sin(s)*0.2*sin(v);\n\n//rotate x axis\nangle = q1*0.1;\nyx = ys*cos(angle) - zs*sin(angle);\nzx = ys*sin(angle) + zs*cos(angle);\nxx = xs;\n\n//rotate y axis\nangle2 = q1*0.16;\nxd = xx*cos(angle2) - zx*sin(angle2);\nzd = xx*sin(angle2) + zx*cos(angle2);\nyd = yx;\n\n//rotaye z a
|