1 line
8.5 KiB
JSON
1 line
8.5 KiB
JSON
|
{"version":2,"baseVals":{"rating":4,"gammaadj":1,"decay":1,"echo_zoom":1,"echo_alpha":0.5,"wave_thick":1,"wave_brighten":0,"wave_a":0.004,"wave_scale":0.01,"wave_smoothing":0,"wave_mystery":-0.44,"modwavealphastart":1,"modwavealphaend":1,"warpanimspeed":0.01,"warpscale":100,"zoomexp":0.24298,"zoom":0.9901,"warp":0.01,"wave_y":0.04,"ob_size":0,"ob_g":1,"ib_size":0,"ib_r":0,"ib_g":0,"ib_b":0,"mv_x":64,"mv_y":48,"mv_l":0,"mv_b":0,"mv_a":0,"b1ed":0},"shapes":[{"baseVals":{"enabled":1,"sides":100,"thickoutline":1,"rad":0.01,"tex_ang":0.12566,"tex_zoom":1.51878,"r":0.05,"a":0.1,"g2":0,"border_a":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"sides":100,"thickoutline":1,"textured":1,"rad":0.80013,"ang":4.64954,"tex_zoom":1.24471,"g":1,"b":1,"r2":1,"b2":1,"a2":0.77,"border_a":0,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"thickoutline":1,"x":1,"rad":3.0054,"tex_ang":0.12566,"tex_zoom":1.51878,"r":0,"g":1,"g2":0,"a2":1,"border_a":0,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"thickoutline":1,"x":1,"rad":0.39872,"tex_ang":0.12566,"tex_zoom":1.51878,"g":1,"b":1,"r2":1,"b2":1,"a2":1,"border_a":0,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""}],"waves":[{"baseVals":{"usedots":1,"scaling":2.44415,"smoothing":0,"a":0,"enabled":0},"init_eqs_eel":"t2 = 0;\nt3 = 0;\nt4 = 0;\ncl = 0;","frame_eqs_eel":"t1 = 0;\nv = 0.01;\nj = j + (bass)*0.01;\nj2 = j2 + (mid_att)*0.01;\nj3 = j3 + (treb_att)*0.01;\nt2 = j;\nt3 = j2;\nt4 = j3;\n//t5 = 0;\nk = k*0.99 + 10*mid/fps;\nt5 = -k;\n\ncl1 = cl1 + 0.002;\ncl1 = if(above(cl1,1),0,cl1);\ncl1 = if(below(cl1,0),1,cl1);\nt8 = cl1;\n\ncl2 = cl2 -1*q1;\ncl2 = if(above(cl2,1),0,cl2);\ncl2 = if(below(cl2,0),1,cl2);\nt7 = cl2;\n\ncl3 = cl3 +0.001;\ncl3 = if(above(cl3,1),0,cl3);\ncl3 = if(below(cl3,0),1,cl3);\nt6 = cl3;","point_eqs_eel":"xx = ((sample*0983624912364)%10000000+100)/10000000;\nyy = ((xx*1896575575)%10000000+100)/10000000;\nzz = ((yy*58652340875)%10000000+100)/10000000;\n\n\nd = sqrt(sqr(xx)+sqr(yy)+sqr(zz));\n\nzz = zz + t8 - if(above(zz+t8,1),1,0) - 0.5;\nxx = xx + t7 - if(above(xx+t7,1),1,0) - 0.5;\nyy = yy + t6 - if(above(yy+t6,1),1,0) - 0.5;\n\nv = 0.001;\n\nw = 1;// (sample*sin(time*0.3)*0.01-1);\nbb = d*d*0.5;\nn= 0.3;\ns1 = sin(sin(t2*w+bb)*n);\ns2 = sin(sin(t3*w+bb)*n);\ns3 = sin(sin(t4*w+bb)*n);\nc1 = cos(sin(t2*w+bb)*n);\nc2 = cos(sin(t3*w+bb)*n);\nc3 = cos(sin(t4*w+bb)*n);\n\nz = (c3*s1*c2 + s3*s2)*xx - (c3*s1*s2-s3*c2)*yy + c3*c1*zz;\nx1 = (c1*c2*xx + c1*s2*yy - s1*zz);\ny1 = ((s3*s1*c2 - c3*s2)*xx + (s3*s1*s2+c3*c2)*yy + s3*c1*zz);\n\nzoom = .5*(1/(z+0.5));\nx = 0.5 + zoom*x1 + sin(time*0.1)*0.;;\ny = 0.5 + zoom*y1 + cos(time*0.16801)*0.;\n\npi3 = 3.1415*2*0.3333;\nt = z*2+t2*1;\nc=3;\n//r = sin(t)*c;\n\n//g = sin(t+pi3)*c;\n\n//b = sin(t-pi3)*c;\n\n\nr = if(above(r,1),1,r);\nr = if(below(r,0),0,r);\ng = if(above(g,1),1,g);\ng = if(below(g,0),0,g);\nb = if(above(b,1),1,b);\nb = if(below(b,0),0,b);\n\na = 0.4;"},{"baseVals":{"scaling":2.44415,"smoothing":0,"enabled":0},"init_eqs_eel":"t2 = 0;\nt3 = 0;\nt4 = 0;\ncl = 0;","frame_eqs_eel":"t8 = 1;","point_eqs_eel":"t8 = -t8;\ny = sample;\nx = 0.5 + t8*0.005;\n\npi3 = 3.1415*2*0.3333;\nt = time + sample*2;\nc=2;\n\nr = sin(t)*c;\ng = sin(t+pi3)*c;\n\nb = sin(t-pi3)*c;\n\n\nr = if(above(r,1),1,r);\nr = if(below(r,0),0,r);\ng = if(above(g,1),1,g);\ng = if(below(g,0),0,g);\nb = if(above(b,1),1,b);\nb = if(below(b,0),0,b);\n"},{"baseVals":{"thick":1,"additive":1,"scaling":100,"smoothing":0.6,"r":0,"g":0.4,"a":0.3,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":"t1 = q1;\nt2 = q2;\nt3 = q3;\nt4 = q4;\nt5 = q5;\nt6 = q6;\nt7 = q7;\nt8 = q8;","point_eqs_eel":"sample = 1-sample;\nxxx = xx;\nyyy = yy;\nxx = pow(sample,5)*t1 + 5*pow(sample,4)*(1-sample)*t1 + 10*pow(sample,3)*sqr(1-sample)*t2\n+ 10*sqr(sample)*pow(1-sample,3)*t3 + 5*pow(1-sample,4)*sample*t4 + pow(1-sample,5)*t4;\n\nyy = pow(sample,5)*t5 + 5*pow(sample,4)*(1-sample)*t5 + 10*pow(sample,3)*sqr(1-sample)*t6\n+ 10*sqr(sample)*pow(1-sample,3)*t7 + 5*pow(1-sample,4)*sample*t8 + pow(1-sample,5)*t8;\nd = 1/sqrt(sqr(xx-xxx)+sqr(yy-yyy));\nx = x
|