1 line
7.1 KiB
JSON
1 line
7.1 KiB
JSON
|
{"version":2,"baseVals":{"rating":5,"gammaadj":1,"decay":0.96,"echo_zoom":1.007,"echo_orient":1,"wave_mode":2,"wave_dots":1,"wave_brighten":0,"wrap":0,"darken":1,"wave_a":0.001,"wave_scale":0.012,"wave_smoothing":0.9,"warpanimspeed":0.01,"warpscale":1.611,"rot":0.004,"warp":0.12532,"wave_r":0.5,"wave_g":0.4,"wave_b":0.3,"ob_size":0,"ob_r":0.11,"ob_b":0.1,"ib_size":0,"ib_r":0,"ib_g":0,"ib_b":0,"mv_x":3,"mv_y":2,"mv_dx":0.02,"mv_dy":-0.02,"mv_l":0.15,"mv_r":0.49,"mv_g":0.48,"mv_b":0.3,"mv_a":0},"shapes":[{"baseVals":{"enabled":1,"sides":5,"textured":1,"rad":1.06779,"ang":0.75398,"tex_zoom":0.77977,"g":1,"b":1,"r2":1,"b2":1,"border_a":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""}],"waves":[{"baseVals":{"enabled":1,"thick":1,"r":0.1,"b":0.7},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":"n=sample*6.283;\nphs=-sample * 0.2;\ntm=q1 + phs;\n\nflip=flip+1;\nflip=flip*below(flip,2);\n\nxp=0;\nyp=flip*0.1 + (sin(tm)*0.5 + 0.5)*0.2;\nzp=0;\n\n//wrist movement;\nang=sin(tm*2)*0.5 +0.5;\n\nxq=xp;\nyq=yp*sin(ang) + zp*cos(ang);\nzq=yp*cos(ang) - zp*sin(ang);\nyq=yp;\nzq=zp;\n\nang=tm*8;\nxp=xq*sin(ang) + yq*cos(ang);\nyp=xq*cos(ang) - yq*sin(ang);\nzp=zq;\n\n//forearm movement;\nzp=zp-0.3;\nang=3.14 + sin(tm*2 - 0.5)*1.5;\nxq=xp;\nyq=yp*sin(ang) + zp*cos(ang);\nzq=yp*cos(ang) - zp*sin(ang);\n\n//upper arm twist\nang=-1.0 + cos(tm*3 + 0.5);\nxp=xq*sin(ang) + yq*cos(ang);\nyp=xq*cos(ang) - yq*sin(ang);\nzp=zq;\n\n//upper arm outward;\nzp=zp-0.35;\nang=cos(tm*2)*0.75 - 1.05;\nxq=xp*sin(ang) + zp*cos(ang);\nyq=yp;\nzq=xp*cos(ang) - zp*sin(ang);\n\n//upper arm up down;\nang=cos(tm)*0.5 - 0.5;\nxp=xq;\nyp=yq*cos(ang) - zq*sin(ang);\nzp=yq*sin(ang) + zq*cos(ang);\n\n//xp=xq;yp=yq;zp=zq;\n\n\n//project into screenspace and draw on screen\nzp=zp+2;\nxs=xp/zp;\nys=yp/zp;\n\nx=xs+0.5;\ny=ys*1.3+0.5;\n\n\na=(1-sample)*flip;\n\nb=b+pow(1-sample,2)*0.3"},{"baseVals":{"enabled":1,"thick":1,"r":0.2,"b":0.6},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":"n=sample*6.283;\nphs=-sample * 0.2;\ntm=q1 + phs;\n\nflip=flip+1;\nflip=flip*below(flip,2);\n\nxp=0;\nyp=flip*0.1 + (sin(tm)*0.5 + 0.5)*0.2;\nyp=-yp;\nzp=0;\n\n//wrist movement;\nang=sin(tm*2)*0.5 +0.5;\n\nxq=xp;\nyq=yp*sin(ang) + zp*cos(ang);\nzq=yp*cos(ang) - zp*sin(ang);\nyq=yp;\nzq=zp;\n\nang=tm*8;\nxp=xq*sin(ang) + yq*cos(ang);\nyp=xq*cos(ang) - yq*sin(ang);\nzp=zq;\n\n//forearm movement;\nzp=zp-0.3;\nang=3.14 + sin(tm*2 - 0.5)*1.5;\nxq=xp;\nyq=yp*sin(ang) + zp*cos(ang);\nzq=yp*cos(ang) - zp*sin(ang);\n\n//upper arm twist\nang=-1.0 + cos(tm*3 + 0.5);\nxp=xq*sin(ang) + yq*cos(ang);\nyp=xq*cos(ang) - yq*sin(ang);\nzp=zq;\n\n//upper arm outward;\nzp=zp-0.35;\nang=cos(tm*2)*0.75 - 1.05;\nxq=xp*sin(ang) + zp*cos(ang);\nyq=yp;\nzq=xp*cos(ang) - zp*sin(ang);\n\n//upper arm up down;\nang=cos(tm)*0.5 - 0.5;\nxp=xq;\nyp=yq*cos(ang) - zq*sin(ang);\nzp=yq*sin(ang) + zq*cos(ang);\n\n//xp=xq;yp=yq;zp=zq;\n\n\n//project into screenspace and draw on screen\nzp=zp+2;\nxs=xp/zp;\nys=yp/zp;\n\nx=xs+0.5;\ny=ys*1.3+0.5;\n\n\na=(1-sample)*flip;\n\n\nb=b+pow(1-sample,2)*0.3\n"},{"baseVals":{"thick":1,"additive":1,"g":0.6,"b":0.1,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":"n=sample*6.283;\ntm=q1;\nphs=-sample*0.5;\n\nflip=flip+1;\nflip=flip*below(flip,2);\n\nxp=0;\nyp=flip*0.1;\nzp=0;\n\n//wrist movement;\nang=sin(tm*2+phs - 2)*0.5 +0.5 + 2;\n\nxq=xp;\nyq=yp*sin(ang) + zp*cos(ang);\nzq=yp*cos(ang) - zp*sin(ang);\n\nang=cos(tm*2+phs - 2)*1.5 ;\nxp=xq*sin(ang) + yq*cos(ang);\nyp=xq*cos(ang) - yq*sin(ang);\nzp=zq;\n\n//forearm movement;\nzp=zp-0.3;\nang=3.14 + sin(tm*2+phs - 0.5)*1.5;\nxq=xp;\nyq=yp*sin(ang) + zp*cos(ang);\nzq=yp*cos(ang) - zp*sin(ang);\n\n//upper arm twist\nang=-1.0 + cos(tm*3 + 0.5 +phs + 0.5);\nxp=xq*sin(ang) + yq*cos(ang);\nyp=xq*cos(ang) - yq*sin(ang);\nzp=zq;\n\n//upper arm outward;\nzp=zp-0.35;\nang=cos(tm*2+phs)*0.75 - 1.05;\nxq=xp*sin(ang) + zp*cos(ang);\nyq=yp;\nzq=xp*cos(ang
|