securityos/node_modules/butterchurn-presets/presets/converted/flexi - grind my glitch up ...

1 line
17 KiB
JSON
Raw Permalink Normal View History

2024-09-06 15:32:35 +00:00
{"version":2,"baseVals":{"rating":2,"gammaadj":1,"decay":1,"echo_orient":1,"additivewave":1,"modwavealphabyvolume":1,"wave_a":0.009,"wave_scale":2.713,"wave_smoothing":0,"modwavealphastart":1.2,"modwavealphaend":1.2,"warpanimspeed":0.204,"warpscale":8.471,"zoom":0.99951,"warp":0.15038,"wave_r":0.44,"wave_g":0.4,"ob_size":0.005,"ob_r":0.01,"ob_a":1,"ib_size":0.26,"mv_x":44.16,"mv_y":33.6,"mv_l":0.5,"mv_g":0,"mv_b":0,"mv_a":0,"b1ed":0},"shapes":[{"baseVals":{"sides":3,"additive":1,"x":0.67,"y":0.53,"rad":0.17457,"ang":0.25133,"tex_ang":3.14159,"tex_zoom":0.99979,"g":1,"b":1,"r2":1,"b2":1,"a2":1,"border_g":0.5,"border_b":0.15,"border_a":0,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"sides":23,"additive":1,"num_inst":817,"rad":0.02798,"tex_ang":3.14159,"tex_zoom":0.99979,"g":1,"b":1,"a":0.41,"r2":1,"b2":1,"border_a":0,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":""},{"baseVals":{"sides":100,"textured":1,"x":0.9,"g":1,"b":1,"r2":1,"b2":1,"a2":1,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":"x = sin(time) * .4 + .5;\n\n\npow( (bass*.15),2);"},{"baseVals":{"sides":36,"additive":1,"rad":0.81623,"r":0,"g":0.04,"g2":0,"border_a":0,"enabled":0},"init_eqs_eel":"","frame_eqs_eel":"x = 1-q1;\ny = q2;\nx = 0.5 + (x - 0.5)*0.25;\ny = 0.5 + (y - 0.5)*0.25;"}],"waves":[{"baseVals":{"enabled":1,"sep":4,"spectrum":1,"thick":1,"additive":1,"scaling":100,"smoothing":0,"r":0.05,"g":0.15},"init_eqs_eel":"t2 = 0;\nt3 = 0;\nt4 = 0;\nab = 1;","frame_eqs_eel":"// parameters\nw = time*0.5; // rotation (0..2Pi)\nt1 = 0.5; // center for rotation (x)\nt2 = 0.5; // center for rotation (y)\nt3 = 1; // scale\nt4 = 0; // translation (x)\nt5 = 0; // translation (y)\nt6 = sin(w);\nt7 = cos(w);","point_eqs_eel":"xx = if(equal(sample,0),q3,xx);\nyy = if(equal(sample,0),q4,yy);\n\n\ndx = xx*(1-xx)-q5*xx*yy/(xx+q6);\ndy = q7*yy*(1-yy/xx);\n\nx1 = xx;\ny1 = yy;\n\nxx = xx+dx*0.2;\nyy = yy+dy*0.2;\n\nx1 = 0.5+(x1-0.5)/q1 + dy*value1*0.01;\ny1 = 0.5+(y1-0.5)/q2 - dx*value1*0.01;\n\n\n// synchronized affine transformation\nx = q26 + ((x1-q26)*q32 + (y1-q27)*q31)*q28 + q29;\ny = q27 + (-(x1-q26)*q31 + (y1-q27)*q32)*q28 + q30;"},{"baseVals":{"enabled":0},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":"xx1 = if(equal(sample,0),q11,xx1);\nyy1 = if(equal(sample,0),q12,yy1);\nzz1 = if(equal(sample,0),q13,zz1);\n\ndx1 = q14*(yy1-xx1);\ndy1 = xx1*(q15-zz1)-yy1;\ndz1 = xx1*yy1-q16*zz1;\nxx1 = xx1 + q17*dx1;\nyy1 = yy1 + q17*dy1;\nzz1 = zz1 + q17*dz1;\n\nmy_x = xx1*0.02;\nmy_y = yy1*0.02;\nmy_z = zz1*0.02;\n\nx = 0.5 + my_x;\ny = 0.5 + my_y;"},{"baseVals":{"enabled":0},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":""},{"baseVals":{"enabled":0},"init_eqs_eel":"","frame_eqs_eel":"","point_eqs_eel":""}],"init_eqs_eel":"x1 = 0;\ny1= .001;\nz1 = 0;","frame_eqs_eel":"zoom = 1;\nwarp = 0;\nwave_a = 0;\n\n\n// below parameters belong to an extended \"Lotka-Volterra\" model (simple predator-prey differential equation system - see wikipedia)\n\nstartx = 0.7; // initial predator population (used only for the phase plot)\nstarty = 0.7; // initial prey population\n\na = 1.0; // LV-model parameters - some pairs reach a so-called limit-cycle\nb = 0.14;\nd = 0.2;\n\nq1 = aspectx;\nq2 = aspecty;\n\nq3 = startx;\nq4 = starty;\n\nq5 = a; // the model parameters are synchronized for the phase plot wave and the per-vertex warp\nq6 = b;\nq7 = d;\n\n\nvol = bass*8 + mid*5 + treb*3;\nm = m*0.97 + vol*0.08;\nmonitor = vol;\nbeat = above(vol,res)*above(vol,m)*above(vol,16);\ndiff = (1-beat)*diff + beat*(vol-res);\nres = beat*(vol + m*0.04) + (1-beat)*(res - (0.1+diff*0.02)*60/fps);\nres = max(0,res);\n\nw = if(beat,rand(3.14*2),w);\nx = if(beat,rand(1),x);\ny = if(beat,rand(1),y);\n\n// below parameters belong to a synchronized affine transformation for waves and the per-vertex code (rotate, scale, translate)\n\nq26 = 0.5*x; // center for rotation and scaling (x)\nq27 = 0.5*y; // center for rotation and scaling (y)\nq28 = 1; // scale\nq29 = 0.4; // translate x\nq30 = 0.1; // translate y\nq31 = sin(w);\nq32 = cos(w);\nq25 = w;\n// TODO: compensate parameter changes