1 line
22 KiB
JSON
1 line
22 KiB
JSON
|
{"version":2,"baseVals":{"rating":3,"gammaadj":1,"decay":0.925,"echo_zoom":1.007,"echo_orient":3,"wave_mode":2,"wrap":0,"wave_scale":0.01,"warpscale":5.921,"zoom":1.0003,"warp":0.59124,"sy":0.99998,"ob_size":0,"ob_r":1,"ob_g":0.05,"ob_b":0.1,"ob_a":1,"ib_size":0,"mv_a":0,"b1x":0.5},"shapes":[{"baseVals":{"enabled":1,"sides":50,"num_inst":200,"rad":0.01,"tex_ang":0.87965,"tex_zoom":0.1995,"r":0,"r2":1,"b2":1,"border_a":0},"init_eqs_eel":"","frame_eqs_eel":"\nsample=instance/num_inst;\n\nrad= (16+14*sin(.1*time))*rad/(.3+abs(z3)*d);\n\n/////shifter's cube\n\nit = it+1;\nsz = 1;\nss = sample*6;\nox = sz*.5*pow(-1,it)*below(ss,1) + .5*pow(-1,it)*above(ss,1)*sz*below(ss,2) + above(ss,2)*.5*pow(-1,it)*sz*below(ss,3);\noy = (ss-.5)*sz*below(ss,1) + sz*.5*above(ss,1)*below(ss,2) + (.5-(ss-2))*sz*above(ss,2)*below(ss,3);\noz = -sz*.5*below(ss,1) + ((ss-1)-.5)*sz*above(ss,1)*below(ss,2) + sz*.5*above(ss,2)*below(ss,3);\nox = ox + above(ss,3)*below(ss,4)*-.5*sz + above(ss,4)*below(ss,5)*sz*(-.5+(ss-4)) + above(ss,5)*sz*.5;\noy = oy + above(ss,3)*below(ss,4)*.5*sz*pow(-1,it) + above(ss,4)*below(ss,5)*sz*-.5 + above(ss,5)*sz*(-.5+(ss-5));\noz = oz + above(ss,3)*below(ss,4)*sz*(.5-(ss-3)) + above(ss,4)*below(ss,5)*sz*.5*pow(-1,it) + above(ss,5)*sz*.5*pow(-1,it);\n\nmy_x =ox+.1*sin(q2);\nmy_y =oy+.1*sin(q3);\nmy_z =oz+.1*sin(q1);\n\n\n/////// rotations\n\nd = 3;\nzoom = .9;\n\nw3 = q3;\nw2 = q1;\nw1 = q2;\n\nx1 = cos(w1)*my_x + sin(w1)*my_y;\ny1 = -sin(w1)*my_x + cos(w1)*my_y;\nz1 = my_z;\n\nx2 = cos(w2)*x1 + sin(w2)*z1;\nz2 = -sin(w2)*x1 + cos(w2)*z1;\ny2 = y1;\n\ny3 = cos(w3)*y2 + sin(w3)*z2;\nz3 = -sin(w3)*y2 + cos(w3)*z2;\nx3 = x2;\n\nl = sqrt(x3*x3 + y3*y3);\nw = atan2(x3,y3);\nd = sqrt(x3*x3 + y3*y3 + (z3+d)*(z3+d));\np = tan(asin(1) + atan2(d+z3,l));\n\nmy_x = zoom*sin(w)*p;\nmy_y = zoom*cos(w)*p;\n\nx = 0.5 + my_x/q6;\ny = 0.5 + my_y/q5;\n\nr=.5+.5*sin(22*sample+q2);\ng=.5+.5*sin(26*sample+q1);\nb=.5+.5*sin(14*sample+q3);\n\nr2=.1*r;\ng2=.1*g;\nb2=.1*b;"},{"baseVals":{"enabled":1,"textured":1,"num_inst":30,"x":0.1,"y":0.12,"rad":0.29767,"g":1,"b":1,"r2":1,"b2":1,"a2":1,"border_a":0.05},"init_eqs_eel":"","frame_eqs_eel":"sample=instance/num_inst;\n\ny=y+3*y*sample*sample;\n\ntex_zoom=1.5+1.*sin(144*sample+time);\ntex_ang=5*q1*sin(388*sample);\nr=.5+.5*sin(sample+time);\nr2=r;\ng=.5+.5*sin(2*sample+1.2*time);\ng2=g;\nb=.5+.5*sin(3*sample+1.3*time);\nb2=b;"},{"baseVals":{"enabled":1,"sides":12,"num_inst":92,"x":0.8,"rad":0.02705,"ang":1.5708,"tex_ang":1.25664,"tex_zoom":3.07268,"g":1,"b":1,"g2":0,"border_g":0,"border_b":0,"border_a":0},"init_eqs_eel":"","frame_eqs_eel":"t1 = time - int (time);\nsample = instance/num_inst;\nt_abs = sample*3;\nt_rel = sample-time/5;\n\nampl = 2*t_abs/2 ;\n\nk1=sin(time/13);\nk2=sin(time/12);\nox = ampl*sin (t_abs*(31+5*k1)) + sin(time/25)*(1-t_abs)*0.4 ;\noy = ampl*cos (t_abs*(31+5*k2));\noz = -1 ;\n\n\nr = sqr(sin(t_rel*3.4));\ng = sqr(sin(t_rel));\nb = sqr (cos(t_rel*1.8));\n\n//a=(0.1*(sin(t_abs*3)) + 0.6*q3*below (abs(1-t_abs-t1 ),0.3))*a;\n\nxang = time/9.5;\nyang = 0*time/7;\nzang = -time/22;\nfov = 0.5;\n\n\n// Rotation um x,y,z\n\nmx = ox*cos(zang) - oy*sin(zang);\nmy = ox*sin(zang) + oy*cos(zang);\n\nox = mx;\noy = my;\nmx = ox*cos(yang) + oz*sin(yang);\nmz = -ox*sin(yang) + oz*cos(yang);\nox = mx;\noz = mz;\nmy = oy*cos(xang) - oz*sin(xang);\nmz = oy*sin(xang) + oz*cos(xang);\noy = my;\noz = mz;\n\noz = oz - 6;\nx = ox*fov/oz +0.5;\n//x = (x-.5)*0.75 + 0.5;\ny = oy*fov/oz + 0.5;\n\na=1/mz*.5;\n//a2=1/mz*.5;\n//border_a=1/mz*.5;\nrad=1/mz*.005;"},{"baseVals":{"enabled":1,"sides":12,"num_inst":92,"x":0.8,"rad":0.1979,"ang":1.5708,"tex_ang":1.25664,"tex_zoom":3.07268,"g":1,"b":1,"g2":0,"border_g":0,"border_b":0,"border_a":0},"init_eqs_eel":"","frame_eqs_eel":"t1 = time - int (time);\nsample = instance/num_inst;\nt_abs = sample*3;\nt_rel = sample-time/5;\n\nampl = 2*t_abs/2 ;\n\nk1=sin(time/13);\nk2=sin(time/12);\nox = ampl*sin (t_abs*(31+5*k1)) + sin(time/25)*(1-t_abs)*0.4 ;\noy = ampl*cos (t_abs*(31+5*k2));\noz = -1 ;\n\n\nr = sqr(sin(t_rel*3.4));\ng = sqr(sin(t_rel));\nb = sqr (cos(t_r
|